AUG 19, 2018 3:39 AM PDT

Clay-Based Technology Helps Form Blood Vessels

WRITTEN BY: Nouran Amin

Angiogenesis is the biological process of forming new blood vessels.

The process of angiogenesis serves as one of the major clinical challenges in wound healing and tissue implants. Scientists at Texas A&M University have sought to address this clinical issue by developing clay-based technology that will seek to assist in the process of angiogenesis by delivering therapeutic proteins.

The research team, led by members of the Inspired Nanomaterials and Tissue Engineering Lab in the Department of Biomedical Engineering, have designed this technology that introduced a new type of two-dimensional clay known as nanosilicates. The nanosilicates will seek to deliver multiple specialized proteins known as growth factors into the body in order to stimulate new blood vessel formation. According to biomedical engineering assistant professor, Dr. Akhilesh K. Gaharwar, the clay is designed to lengthen the release through its high surface area and charged characteristics allowing blood vessels time to form. "Clay nanoparticles work like tiny weak magnets that hold the growth factors within the polymeric hydrogels and release very slowly," Gaharwar said. "Sustained and prolonged release of physiologically relevant doses of growth factors are important to avoid problems due to high doses, such as abrupt tissue formation."

Image Credit: Agora Media via EverdayHealth.com

Additionally, Dr. Kayla Bayless, a co-investigator of the study from the Department of Molecular and Cellular Medicine, explains that the clay maintains the organization of the growth factors, prevents abnormal growth, and moderates the activity of surrounding cells. Gaharwar also believes that establishing clay nanoparticles as the platform technology for therapeutic delivery, then the research will greatly impact the future of bioactive scaffolds and implants.

The research study was published in Advanced Biosystems and funded by the Division of Chemical, Bioengineering, Environmental and Transport Systems of the National Institute of Science, the National Institute of Biomedical Imaging, and Bioengineering of the National Institutes of Health and by the National Science Foundation.

Source: Texas A&M University

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
MAR 22, 2020
Space & Astronomy
MAR 22, 2020
Critical Sample Handling Equipment is Installed on the Perseverance Rover
It was only a couple of weeks ago that NASA’s Mars 2020 rover got renamed to the Perseverance rover, and with a la ...
MAR 14, 2020
Technology
MAR 14, 2020
Mass Cytometry Can Bring New Cancer Therapeutics
New technology may soon accelerate cancer therapeutic development. The revolutionary technique is called mass cytometry ...
APR 23, 2020
Chemistry & Physics
APR 23, 2020
Wearable e-skin powered by sweat
What if your skin could monitor your heart rate, body temperature, and blood sugar levels? Well, not your skin, exactly ...
MAY 21, 2020
Technology
MAY 21, 2020
Bridging Robotic and Human Connection Through Humor
Jon the Robot, a standup comedian, notes challenges in get bookings. "They always think I'm too robotic," ...
MAY 26, 2020
Technology
MAY 26, 2020
Creating High Security Identification
Imagine whispering at one end of the Echo Wall in the Temple of Heaven in Beijing. Suddenly, you find that people a far ...
MAY 28, 2020
Chemistry & Physics
MAY 28, 2020
Expandable Resin Solves the Size Problem of 3D Printing
One of the current limitations of using a 3D printer is the size of the product. For someone to print a large part, they ...
Loading Comments...