AUG 24, 2018 10:45 PM PDT

Shape-shifting Material Innovates Technology

WRITTEN BY: Nouran Amin

Image Credit: Bowman Lab / University of Colorado Boulder via ScienceDaily

A study recently published in the journal Science Advances explains how engineers at the University of Colorado have developed new material that is capable of morphing “complex, pre-programmed shapes” using light and temperature stimulus leading to a literal square peg to transform into a round hole before returning into its original shape.

"The ability to form materials that can repeatedly oscillate back and forth between two independent shapes by exposing them to light will open up a wide range of new applications and approaches to areas such as additive manufacturing, robotics, and biomaterials," explains senior of the study, Christopher Bowman, as well as distinguished Professor in CU Boulder's Department of Chemical and Biological Engineering (CHBE).

Such shape-shifting material could prove useful for many applications in “manufacturing, robotics, biomedical devices and artificial muscles”. Prior to the study, many engineers and scientists have utilized a broad range of physical mechanisms to change and alter “an object's size, shape or texture with programmable stimuli”.

Unfortunately, such efforts have not been successful since these materials are known to be limited in size or extent and often irreversible to change back to original form. The newly developed material will utilize liquid crystal elastomers (LCEs) to readily program 2-way transformations on the macroscopic level which is the same technology behind television displays. Additionally, the molecular arrangements of LCEs allow it to be susceptible to dynamic change through heart and light.

Overall, the new material’s ability to change and revert back provides a broad range of applications for the future particularly for increasing the flexibility and adaptability of biomedical devices.

"We view this as an elegant foundational system for transforming an object's properties," explains the lead author of the study, Matthew McBride, as well as a post-doctoral researcher in CHBE. "We plan to continue optimizing and exploring the possibilities of this technology."

Source: The University of Colorado at Boulder

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
OCT 16, 2019
Technology
OCT 16, 2019
Building Atomically Thin Protection from Excessive Heat in Electronic Devices
Smartphones and laptops start to heat when in use which can often be discomforting to users. Excess heat is also known to lead to malfunctions and even cau...
OCT 16, 2019
Technology
OCT 16, 2019
Artificial Muscle for Soft Robotics
Imagine wearing a flower brooch that blooms in front of your eyes? Well, the ultrathin, artificial muscle used for soft robotics was recently developed by ...
OCT 16, 2019
Space & Astronomy
OCT 16, 2019
How is NASA's InSight Mission on Mars Doing?
NASA’s InSight mission officially landed on Mars last November, and perhaps unsurprisingly, the media hyped this mission’s purpose on the red p...
OCT 16, 2019
Chemistry & Physics
OCT 16, 2019
Smart Material that Can Switch Back-and-Forth Between Different Solid States
The research of metamaterials, the artificial entities that possess the properties unknown to nature, is at the forefront of engineering innovation. ...
OCT 16, 2019
Neuroscience
OCT 16, 2019
Neuroscientists create a stunning digital map of 1,000 neurons
Two years ago, Dr. Jayaram Chandrashekar and his colleagues at the Howard Hughes Medical Institute's Janelia Research Campus sought out to map the mouse brain as intricately as possible. Now,...
OCT 16, 2019
Cancer
OCT 16, 2019
Electronic "nose" sniffs out the best cancer treatment
Can you imagine an electronic device that is capable of figuring out which lung cancer patients will respond best to immunotherapy? If so, now try to imagi...
Loading Comments...