OCT 28, 2018 12:21 AM PDT

Worlds Smallest Gyroscope

WRITTEN BY: Nouran Amin

What do vehicles, drones and wearable/handheld devices have in common? They all utilize gyroscopes in determining their orientation in three-dimensional space.

Gyroscopes used to be “sets of nested wheels” with each wheel spinning on a different axis. Now, opening up a cell phone and you will find the modern-day equivalent: a microelectromechanical sensor (MEMS). These MEMS gyroscopes measure the differences in the forces exerted on two oscillating identical masses moving in opposite directions. Because they are limited in their sensitivity, optical gyroscopes were developed to perform the same function but have a greater degree of accuracy by a phenomenon called the Sagnac effect.

Named after the French physicist Georges Sagnac, the Sagnac effect is an optical phenomenon based on Einstein's theory of general relativity. To the Sagnac effect, a beam of light is split into two with the twin beams traveling in opposite directions along a circular pathway where the meet at the same light detector.

Presently, the smallest high-efficacy optical gyroscopes available today are larger than a golf ball which makes them unsuitable for many portable applications. If optical gyroscopes are built smaller, then the signal that captures the Sagnac effect will also decrease, making it altogether a challenge for the gyroscope to detect movement--preventing the miniaturization of optical gyroscopes.

Worlds Smallest Gyroscope. Image Credit: Ali Hajimiri via CalTech.edu

However, engineers at Caltech have sought to develop a newly optimized gyroscope that is 500 times smaller than the current high-applicative device and can detect phase shifts that are 30 times smaller. Funded by the Rothenberg Innovation Initiative, the research study, which was led by Ali Hajimiri, Bren Professor of Electrical Engineering and Medical Engineering in the Division of Engineering and Applied Science, was published in the November issue of Nature Photonics.

In the paper “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement”, authors describe a new technique called "reciprocal sensitivity enhancement” that has improved the efficiency of the developed gyroscope. In this case, "reciprocal" means that it affects both beams of the light inside the gyroscope in the same way. Since the Sagnac effect relies on detecting a difference between the two beams as they travel in opposite directions, it is considered nonreciprocal.

Inside the gyroscope, the light travel through tiny conduits that transfer light; miniaturized optical waveguides. The researchers have found a way to “take-out” that reciprocal noise while only leaving the signals deriving from the Sagnac effect. The process of enhancing reciprocal sensitivity has greatly improved the signal-to-noise ratio and enabled the optical gyro to integrate onto a chip that smaller than a grain of rice.

Source: CalTech

About the Author
  • Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
SEP 21, 2021
Cell & Molecular Biology
Single-cell Proteomics Prevails Over DNA and RNA Sequencing
SEP 21, 2021
Single-cell Proteomics Prevails Over DNA and RNA Sequencing
Transcriptomics studies are critical to understanding how biological systems work. However, this technique only estimate ...
SEP 14, 2021
Clinical & Molecular DX
HIV Self-Test App Proves Promising
SEP 14, 2021
HIV Self-Test App Proves Promising
A new app allows users to self-test for HIV, which has proven to help positive patients get access to medical care and c ...
SEP 22, 2021
Chemistry & Physics
Commercial Fusion Energy Could be Within Reach, Thanks to the World's Most Powerful Magnet
SEP 22, 2021
Commercial Fusion Energy Could be Within Reach, Thanks to the World's Most Powerful Magnet
Commonwealth Fusion Systems (CFS) announced this month that their new magnet might be the breakthrough needed to make fu ...
SEP 28, 2021
Earth & The Environment
Using UAVs to Study the Environment
SEP 28, 2021
Using UAVs to Study the Environment
Unmanned aerial vehicles (UAVs), or drones, are a relatively new technology for the general public at an affordable cost ...
OCT 07, 2021
Cell & Molecular Biology
Color-Changing Slides Improve Accuracy in Cancer Diagnosis
OCT 07, 2021
Color-Changing Slides Improve Accuracy in Cancer Diagnosis
When cancer is diagnosed, a sample has to be taken from a patient, treated, and analyzed. Researchers have now modified ...
OCT 21, 2021
Earth & The Environment
Cosmic Radiation Events shed light on Norse Settlement in the Americas
OCT 21, 2021
Cosmic Radiation Events shed light on Norse Settlement in the Americas
A new open access study published in Nature yesterday showcases a relatively new method in archaeology. In an attempt to ...
Loading Comments...