DEC 18, 2018 11:06 PM PST

Battery-free Implantable Device for Weight Loss

WRITTEN BY: Nouran Amin

Obesity is considered a rising epidemic affecting more than 700 million adults and children. Measures to control obesity have ranged from risky weight-loss drugs, gastric bypass, to long strenuous diet plans and physical activity.

Learn more about the obesity epidemic:

 

 

Now, a study published in Nature Communications proposes a novel measure developed by engineers at the University of Wisconsin-Madison to combat the epidemic—a battery-free, easily implantable weight-loss device.

The implantable device was seen in laboratory testing to shed almost 40 percent of body weight in mice. The device can be implanted through a minimally invasive procedure and is considered safe for use in the body. It is very tiny measuring about a third of the area of a penny.

Specifically, the device works by using the natural churning motions of the stomach to generate gentle electric pulses delivering them to the brain via the vagus nerve. The electrical stimulation tricks the brain into think the stomach is full after only a few bites of food. "The pulses correlate with the stomach's motions, enhancing a natural response to help control food intake," explains Xudong Wang, a UW-Madison professor of materials science and engineering.

Operation principle schematically showing the pathway for electric signal generation by the stomach via the vagus nerve and into the brain.

Credit: Nature Communications

What’s unique about this device is it needs no batteries, electronics, or complicated wiring to function properly—the device relies on the motions of the stomach by the stimulations of the vagus nerve to power its internal generators. "One potential advantage of the new device over existing vagus nerve stimulators is that it does not require external battery charging, which is a significant advantage when you consider the inconvenience that patients experience when having to charge a battery multiple times a week for an hour or so,” says Wang. "It's automatically responsive to our body function, producing stimulation when needed; our body knows best."

Source: College of Engineering, University of Wisconsin-Madison , Nature Communications

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
JUL 01, 2020
Technology
Computerize Your Dog
JUL 01, 2020
Computerize Your Dog
Scientists at CAMERA, a research institute at the University of Bath, can make it possible to computerize your dog using ...
JUL 05, 2020
Technology
Computational Model Predicts Speech
JUL 05, 2020
Computational Model Predicts Speech
Our brains analyze spoken language by predicting syllables. As such, this inspired researchers at the University of Gene ...
AUG 25, 2020
Technology
Real-Time Robots
AUG 25, 2020
Real-Time Robots
Robots that can detect real-time change? U.S. Army scientists demonstrate the world’s first human-robot team that ...
SEP 04, 2020
Technology
Machine Learning May Protect Future Pregnancies
SEP 04, 2020
Machine Learning May Protect Future Pregnancies
It is critical for doctors to examine a placenta after the birth of a baby to determine a mothers health risks for any f ...
OCT 19, 2020
Clinical & Molecular DX
Making Capillary Electrophoresis Accessible for Any Lab
OCT 19, 2020
Making Capillary Electrophoresis Accessible for Any Lab
Analyzing nucleic acids through gel electrophoresis has been a staple of genetic research for decades. But using traditi ...
OCT 23, 2020
Space & Astronomy
Astronomers Merge AI and Photonics to Find New Earths
OCT 23, 2020
Astronomers Merge AI and Photonics to Find New Earths
Researchers from the University of Sydney have developed a new type of sensor capable of measuring and correcting starli ...
Loading Comments...