JUN 12, 2019 12:54 PM PDT

An Innovative Electron Microscope

WRITTEN BY: Nouran Amin

Since the development of the transmission electron microscope (TEM), scientists have sought ways to improve spatial resolution. With the design of the aberration-correcting lens systems for scanning TEM (STEM), it has achieved a sub-Å spatial resolution. However, the negative aspect of using current magnetic condenser-objective-lens systems for atomic-resolution, is the required need to insert the samples into very high magnetic fields of up to 2-3 T.

Learn more about the history of microscopes:

The use of high fields can severely tamper with atomic-resolution imaging of magnetic materials, such as silicon steel, and even cause destruction of the magnetic and physical structure.

The inventions of new magnetic materials is a rapidly growing field, however, the need for high quality atomic-scale structural analysis remains a hindrance to many technological advances.

Now, under the JST-SENTAN (Development of System and Technology for Advanced Measurement and Analysis, Japan Science and Technology Agency) joint development team, a new magnetic-field-free objective-lens system was developed.

The revolutionary microscope contains two round lenses placed in an exact mirror-symmetric configuration with respect to the sample plane providing an extremely small residual magnetic fields. The microscope was used to observe the atomic structure of a grain-oriented silicon-steel sheet which is critical soft magnetic engineering material used in the development of electric transformers and motors.

The developed Magnetic-field-free Atomic-Resolution STEM (“MARS”) combined with a higher-order aberration corrector (shown above in the objective-lens system), this system can focus an electron beam to the atomic scale. ©JST

Findings show a clear atomic resolution of the silicon steel and is the first development of atom-resolved imaging of materials with sub-Å spatial resolution and a residual magnetic field less than 0.2 mT.

Although it operates like conventional TEMs/STEMs, the development is expected to advance research and nanotechnology because of the unprecedented atomic-level structural characterization of magnetic materials.

Source: Science Daily

About the Author
  • Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
MAR 12, 2021
Microbiology
Bacterial Proteins Form a Network to Attack Their Host Cell
MAR 12, 2021
Bacterial Proteins Form a Network to Attack Their Host Cell
Many bacteria that infect intestinal cells make and release bacterial proteins into their host in order to hijack cell f ...
APR 24, 2021
Technology
'Information Theory' Detects Culprit Cancer Genes
APR 24, 2021
'Information Theory' Detects Culprit Cancer Genes
A team of scientists at Johns Hopkins used “information theory” to uncover key cancer genes. One such culpri ...
APR 27, 2021
Technology
Does Increased Ventilation Indoors Help Prevent the Spread of COVID-19? The Answer is Complicated.
APR 27, 2021
Does Increased Ventilation Indoors Help Prevent the Spread of COVID-19? The Answer is Complicated.
Since the COVID-19 pandemic began, researchers have sought new ways to curb the spread of the virus. As colder weather a ...
JUN 15, 2021
Genetics & Genomics
DNA May Soon Become a Digital Storage Device
JUN 15, 2021
DNA May Soon Become a Digital Storage Device
We live in an age of information and data, and more is being generated every day. It's estimated that there are about te ...
JUN 16, 2021
Space & Astronomy
Mapping the Boundaries of the Heliosphere
JUN 16, 2021
Mapping the Boundaries of the Heliosphere
Earth and the planets in the solar system sit within the heliosphere, a giant bubble formed by the charged particles, li ...
JUN 17, 2021
Infographics
Cryptocurrencies 101
JUN 17, 2021
Cryptocurrencies 101
The first cyrptocurrency, Bitcoin, was invented by an unknown person or group of people under the name Satoshi Naka ...
Loading Comments...