JUL 02, 2019 2:03 PM PDT

New Insight Into Lithium-Ion Battery Technology

WRITTEN BY: Nouran Amin

The same battery technology utilized in our smartphones and laptops are used in electric cars. These are lithium-ion batteries that are virtually used for anything electronic. Recently, lithium-ion battery technology has not been progressing in improvement. To expand on areas of improvement and increase the use of electric cars, the very science of these batteries must be understood particularly in how they wear out over time.

Now, researchers have captured a detailed X-ray image of lithium-ion battery electrodes which indicates that damage mostly comes from repeated charging. The comprehensive image can help manufactures better design longer-lasting and reliable batteries for use in smartphones and cars.

Purdue University: In-depth computational models of commercial lithium-ion battery electrodes specifically reveal where damage happens with use. (Purdue University image/Kejie Zhao)

“The creation of knowledge is sometimes more valuable than solving the problem of battery electrode damage,” states Dr. Kejie Zhao of Purdue University. “Before, people didn’t have the techniques or theory to understand this problem.”

Findings were published in the journals Advanced Energy Materials and the Journal of the Mechanics and Physics of Solids, and describe how an X-ray tool driven by artificial intelligence is capable of scanning thousands of particles in a lithium-ion battery electrode at once using machine-learning algorithms. The unique technique brings an understanding to how damaging the electrodes deteriorates a battery’s charging capacity. Results show that damage to the battery particles does not necessarily happen in one location or at the same time but that some particles may actually fail more quickly than others.

Purdue University: Researchers have created a new technique that scans thousands of particles in the electrode of a battery at once. The goal is to understand how cracks in these particles impact battery performance, so that the industry can build more reliable batteries with higher charging capacity. (European Synchrotron Radiation Facility image/Yang Yang)

“Most work had been focused on the single particle level and using that analysis to understand the whole battery. But there’s obviously a gap there; a lot differs between a single particle at a micron scale and the whole battery at a much larger scale,” said Dr. Zhao, whose is a professor of mechanical engineering. “The capacity of batteries doesn’t depend on how many particles are in the battery; what matters is how the lithium ions are used.”

“It’s hard for a battery to have a high capacity and be reliable at the same time,” says Dr. Zhao. “Increasing a battery’s capacity often means sacrificing its reliability.”

Source: Purdue University

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 25, 2019
Technology
NOV 25, 2019
How artificial intelligence (AI) is improving immunotherapy
Researchers at Case Western Reserve University’s digital imaging lab are pioneering the use of Artificial Intelligence (AI) to predict the efficacy o...
DEC 11, 2019
Technology
DEC 11, 2019
An App Can Help Fight Drug Addiction Relapse
A computer game, on the verge of becoming a smartphone app, can use math to detect a patient’s comfort with risk-taking. Specifically, the game is ba...
JAN 13, 2020
Chemistry & Physics
JAN 13, 2020
Magnetic Field-guided Tethered-probe Can Navigate Complex Vascular Networks
Deep and complex vasculatures such as carotid arteries represent a challenge for diagnosis and treatment because they are buried underneath layers of other...
FEB 04, 2020
Space & Astronomy
FEB 04, 2020
What Are NASA's 'Great Observatories?'
NASA recently retired its Spitzer Space Telescope, one of four specialized space-based observatories that together made up the American Space Agency’...
FEB 04, 2020
Technology
FEB 04, 2020
Technology Differentiates Between Two Critical Neurodegenerative Diseases
New technology developed by researchers at The University of Texas Health Science Center at Houston would be able to differentiate between two progressive ...
FEB 05, 2020
Technology
FEB 05, 2020
Portable Device Detects Food-borne illness
 Foodborne illnesses kill 3,000 people on an annual basis. According to the Centers for Disease Control and Prevention, an estimated 48 million people...
Loading Comments...