AUG 25, 2019 5:49 PM PDT

Bioprinting Complex Tissues

WRITTEN BY: Nouran Amin

Tissue engineering is a quickly growing field that involves the development of artificial organs and tissues that can be utilized to test the efficacy of drugs, repaired damaged tissues, and even to replace whole organs. However, despite its growth the field still faces challenges in current fabrication methods that limit their ability to produce free-form shapes and achieve high cell viability.

Learn more about tissue engineering:

Now, researchers at the Laboratory of Applied Photonics Devices (LAPD) in EPFL's School of Engineering, working with colleagues from Utrecht University, have developed an optical technique that takes as little as a few seconds to sculpt complex tissue shapes in a biocompatible hydrogel containing stem cells. This form of high-resolution bioprinting method, known as volumetric bioprinting, can allow the tissue to become vascularized with addition of endothelial cells.

The study was published in Advanced Materials and describes how the technique will change the way cellular engineering is performed allowing a new breed of personalized, functional bioprinted organs.

"Unlike conventional bioprinting -- a slow, layer-by-layer process -- our technique is fast and offers greater design freedom without jeopardizing the cells' viability," says Damien Loterie, an LAPD researcher and one of the study's coauthors.

Researchers created an optical method that sculpts complex shapes in stem-cell-laden hydrogels and then vascularizes the resulting tissue to increase its viability. The groundbreaking technique will advance the field of tissue engineering. © Alain Herzog / 2019 EPFL

The first step of volumetric bioprinting involves projecting a laser down a spinning tube filled with a stem-cell-laden hydrogel. The spinning shapes the tissue by focusing the energy from the light at specific locations that then solidify. A few seconds later, a complex 3D shape appears, suspended in the gel and the stem cells present in the hydrogel are largely unaffected by this process. The endothelial cells are then added to vascularize the tissue. Researchers explain that it is possible to create a tissue construct in a clinically useful size such as a valve similar to a heart valve, a meniscus, and a part of the femur.

Bioprinting in just a few seconds:

"The characteristics of human tissue depend to a large extent on a highly sophisticated extracellular structure, and the ability to replicate this complexity could lead to a number of real clinical applications," says Paul Delrot, another coauthor.

The technique could allow mass production of artificial tissues or organs that help speed up the testing of new drugs in vitro and become ethically relevant as it obviates the need for animal testing.

"This is just the beginning. We believe that our method is inherently scalable towards mass fabrication and could be used to produce a wide range of cellular tissue models, not to mention medical devices and personalized implants," says Christophe Moser, the head of the LAPD.

Source: Science Daily

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 19, 2020
Space & Astronomy
APR 19, 2020
NASA Pegs Official Launch Date for First Crewed SpaceX Flight
Those who’ve been following the hype shared by both NASA and SpaceX during the past couple of years would know tha ...
APR 26, 2020
Space & Astronomy
APR 26, 2020
NASA Balances the Perseverance Rover's Chassis
Engineers at NASA’s Kennedy Space Center in Cape Canaveral, Florida has been working tirelessly over the past seve ...
APR 30, 2020
Drug Discovery & Development
APR 30, 2020
Researchers Use AI to Accelerate COVID-19 Drug Development
Researchers from the National University of Singapore (NUS) have developed an artificial intelligence platform to accele ...
MAY 03, 2020
Space & Astronomy
MAY 03, 2020
These Contractors Will Develop Lunar Landers for NASA's Artemis Mission
NASA seems to be moving quickly to get the ball rolling for its lunar-centric initiative dubbed Artemis. The program aim ...
JUN 09, 2020
Space & Astronomy
JUN 09, 2020
Why SpaceX's Droneship Footage Often Cuts Out During Landings
SpaceX has nearly mastered the art of landing the first stages of the plethora of rockets its sends into space so that t ...
JUN 26, 2020
Neuroscience
JUN 26, 2020
Artificial and Natural Neurons Communicate Using Dopamine
Researchers from Stanford University have shown that artificial neurons can communicate with biological neurons with dop ...
Loading Comments...