OCT 13, 2014 12:00 AM PDT

Material, Heal Thyself

WRITTEN BY: Peter Micheli
Imagine all of the money, bother, and time that would be saved if materials such as asphalt, concrete, and metals could heal themselves? As strange as it seems, it is in the realm of possibility. For example, Dr. Erik Schlangen, a civil engineer at Delft University in The Netherlands has come up with an asphalt that contains strands of steel wool mixed in, so that with some help, it can meld itself back together if it is broken up. He demonstrated this process at a TED talk, where he broke a piece of asphalt in two, put the pieces back together and heated them in an industrial microwave oven. When he took it out and let it cool a bit, the pieces were one again. The microwave heated the steel wool, melting the bitumen in the asphalt, knitting the material back together. But, you can't put a road in a microwave oven, so how do you apply this process in the field? Schlangen has developed a vehicle that heats the road by passing induction coils over it. He estimates that if the road was repaired this way every four years or so its life could be doubled. The Dutch government has given him some road to test his asphalt on and so far the results have been good.

Concrete is the most common construction material in the world, and while it is very versatile and strong, it's subject to developing cracks, which can grow worse with time as they are continually infiltrated with water or ice. A strange solution to this problem is to put bacteria in the concrete. Yes, bacteria. With this method, bacterial spores in tiny water-permeable capsules are added during the concrete's manufacture. Then the concrete is used as normal and the spores remain inert until water seeps in, causing them to germinate and move toward the surface of the water. As they do, they produce calcite, which fills in the cracks as the bacteria move. Researchers all over the world are looking at this approach, including those at the University of Illinois in the U.S., the University of Ghent in Belgium, Cardiff University in the U.K. and Delft University in the Netherlands. If this type of self-healing concrete is deemed viable, it is likely to be an expensive option and used sparingly. In an interview with The Atlantic's CityLab website, Steve Kosmatka, Vice President of Research and Technical Services at the Portland Cement Association says it is, "Not for sidewalks or roads right in front of houses, but for a bridge you want to get a hundred years out of."

What about metal? There's potential for self-healing there, too. MIT researchers recently found something so surprising that they thought it was a mistake. Under certain circumstances exerting a force on a metal that would be expected to pull it apart had the opposite effect - it caused the crack to close and fuse together. "We had to go back and check," said professor of materials science and engineering Michael Demkowicz, when "instead of extending, [the crack] was closing up. First, we figured out that, indeed, nothing was wrong. The next question was: ‘Why is this happening?" The answer turned out to lie in how grain boundaries interact with cracks in the crystalline microstructure of metal. Grain boundaries are the tiny grains that make up the structure of a metal. It was found that under certain conditions stress causes the microstructure to change, making the grain boundaries migrate, leading to closing the crack.

This discovery is very new and still quite far away from practical application. But, the researchers plan to study how to design metal alloys so cracks would heal under loads typical for particular applications. Since techniques for controlling the microstructure of alloys already exists, Demkowicz says they just have to figure out how to achieve the desired result.

All of these self-healing materials could, of course, result in huge savings in maintenance costs. But another benefit is environmental in nature. If the things that they are used in have longer life spans, they will have to be replaced less often, resulting in a reduction in a reduction in resources used and any pollutants caused in their creation.
About the Author
You May Also Like
NOV 25, 2019
Clinical & Molecular DX
NOV 25, 2019
eRapid: molecular diagnostic power in the palm of your hand
We've heard lofty biotech promises in the news of being able to diagnose diseases from a single drop of blood. Yet, diagnostic procedures for the maj...
DEC 03, 2019
Genetics & Genomics
DEC 03, 2019
A New Tool for Evaluating Millions of Genetic Sequences at Once
Gene sequencing technologies have created a wealth of data, and scientists can now do more with all that information....
DEC 07, 2019
Genetics & Genomics
DEC 07, 2019
New Tool Rapidly Detects Unintended Gene Changes from CRISPR
CRISPR is one of the most promising technologies under development to treat deadly inherited conditions such as cystic fibrosis and sickle cell disease. No...
DEC 17, 2019
Space & Astronomy
DEC 17, 2019
What to Expect From Boeing's Starliner Spacecraft
NASA’s Commercial Crew Program sports two major contenders for sending astronauts to the International Space Station from American soil for the first...
JAN 27, 2020
Chemistry & Physics
JAN 27, 2020
Espresso, Scientifically
Everyone has their preferred way to make a cup of coffee, but for those who wish to become the master of espresso, now there's a highly scientific way...
FEB 06, 2020
Technology
FEB 06, 2020
3D Skin Printer Promotes Healing
Researchers at the University of Toronto Engineering, Sunnybrook developed a new handheld 3D printer that can deposit sheets of skin to cover large burn wo...
Loading Comments...