NOV 17, 2016 06:30 AM PST

How 1930s radio technology could make the internet more secure

Image Credit: John Schneider/Flickr

If there’s ever going to be a totally secure quantum internet, we’re going to have to overcome some significant challenges.

Among the most critical will be devices that can send and receive quantum data. To that end, researchers at Stanford University have created a novel quantum light source that might someday serve as the basis for quantum communication. They explained their findings in a paper published in Nature Photonics.

The physics of quantum communication is admittedly complex. Standard lasers are actually not useful for secure communication because they emit what is called “classical” light. Data eavesdroppers could extract any data being carried via classical light without detection.

In contrast, a quantum internet would be based on “quantum” light, in which a single unit of light—a single photon—cannot be measured without being destroyed. Therefore, an efficient source of quantum light would enable perfectly secure communication.

Senior author Jelena Vuckovic, a professor of electrical engineering, has been working for years to develop various nanoscale lasers and quantum technologies that might help conventional computers communicate faster and more efficiently using light instead of electricity. She and her team, including lead author Kevin Fischer, a doctoral candidate, realized that a modified nanoscale laser can be used to efficiently generate quantum light for quantum communication.

“The problem is that the quantum light is much weaker than the rest of the light coming from such a modified laser—it is difficult to pick up,” Vuckovic says. “So, we created a way to filter out the unwanted light, allowing us to read the quantum signal much better.”

The filtering works in a fashion similar to the way noise-canceling headphones operate, only with light, instead of sound. With the headphones, a sensor actively gauges the frequency of relatively constant ambient sound—the rumble of traffic, the drone of an airplane engine, the thrum of a refrigerator—and produces a similar pattern, which can be used to cancel out the undesirable sound.

“Some of the light coming back from the modified laser is like noise, preventing us from seeing the quantum light,” Fischer says. “We canceled it out to reveal and emphasize the quantum signal hidden beneath.”

Vuckovic’s team adapted an interference technique borrowed from 1930s-era radio engineering to cancel the unwanted classical light. They first figured out what the “noise” looks like and played it back. By carefully adjusting how the canceling light and the classical light overlap, the unwanted light is canceled and the once-hidden quantum light is revealed.

“This is a very promising development,” Vuckovic says. “It provides us with a practical pathway to secure quantum communications.”

She and her team are now working on creating a working prototype.

Source: Stanford University

This article was originally published on Futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUL 25, 2018
Technology
JUL 25, 2018
3D Model of The Human Heart Ventricle
In a study published in Nature Biomedical Engineering, scientists of Harvard University, in collaboration between SEAS, Wyss, Boston Children's Hospita...
JUL 31, 2018
Cell & Molecular Biology
JUL 31, 2018
A Brand New Geometric Shape
Cell use this shape when packing together to form structures....
AUG 16, 2018
Neuroscience
AUG 16, 2018
Checking Up on Baseline Brain Health
Evaluating brain health can be a complicated process. Whether it's dementia, ADHD or a traumatic brain injury, knowing precisely what's going on is...
SEP 16, 2018
Technology
SEP 16, 2018
3D Virtual Stimulation Detects Irregular Heartbeats
According to a study published in Nature Biomedical Engineering, researchers at Johns Hopkins University have performed 3D personalized virtual simulations...
SEP 22, 2018
Technology
SEP 22, 2018
Tackling Speech and Object Recognition
Computer scientists at MIT have opened new doors in speech and image recognition systems by creating a model system that can identify objects within an ima...
OCT 14, 2018
Space & Astronomy
OCT 14, 2018
NASA's Chandra X-ray Observatory Enters Safe Mode for Unknown Reasons
A little more than a week ago, NASA’s Hubble Space Telescope started exhibiting wonky gyroscope data consistent with a mechanical failure. Consequent...
Loading Comments...