NOV 17, 2016 6:30 AM PST

How 1930s radio technology could make the internet more secure

Image Credit: John Schneider/Flickr

If there’s ever going to be a totally secure quantum internet, we’re going to have to overcome some significant challenges.

Among the most critical will be devices that can send and receive quantum data. To that end, researchers at Stanford University have created a novel quantum light source that might someday serve as the basis for quantum communication. They explained their findings in a paper published in Nature Photonics.

The physics of quantum communication is admittedly complex. Standard lasers are actually not useful for secure communication because they emit what is called “classical” light. Data eavesdroppers could extract any data being carried via classical light without detection.

In contrast, a quantum internet would be based on “quantum” light, in which a single unit of light—a single photon—cannot be measured without being destroyed. Therefore, an efficient source of quantum light would enable perfectly secure communication.

Senior author Jelena Vuckovic, a professor of electrical engineering, has been working for years to develop various nanoscale lasers and quantum technologies that might help conventional computers communicate faster and more efficiently using light instead of electricity. She and her team, including lead author Kevin Fischer, a doctoral candidate, realized that a modified nanoscale laser can be used to efficiently generate quantum light for quantum communication.

“The problem is that the quantum light is much weaker than the rest of the light coming from such a modified laser—it is difficult to pick up,” Vuckovic says. “So, we created a way to filter out the unwanted light, allowing us to read the quantum signal much better.”

The filtering works in a fashion similar to the way noise-canceling headphones operate, only with light, instead of sound. With the headphones, a sensor actively gauges the frequency of relatively constant ambient sound—the rumble of traffic, the drone of an airplane engine, the thrum of a refrigerator—and produces a similar pattern, which can be used to cancel out the undesirable sound.

“Some of the light coming back from the modified laser is like noise, preventing us from seeing the quantum light,” Fischer says. “We canceled it out to reveal and emphasize the quantum signal hidden beneath.”

Vuckovic’s team adapted an interference technique borrowed from 1930s-era radio engineering to cancel the unwanted classical light. They first figured out what the “noise” looks like and played it back. By carefully adjusting how the canceling light and the classical light overlap, the unwanted light is canceled and the once-hidden quantum light is revealed.

“This is a very promising development,” Vuckovic says. “It provides us with a practical pathway to secure quantum communications.”

She and her team are now working on creating a working prototype.

Source: Stanford University

This article was originally published on Futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUL 15, 2020
Technology
Creating Robotic Senses
JUL 15, 2020
Creating Robotic Senses
Placing your dinner plates in the sink or grabbing a bottle of water maybe the simplest thing you do this week but for r ...
JUL 01, 2020
Technology
Computerize Your Dog
JUL 01, 2020
Computerize Your Dog
Scientists at CAMERA, a research institute at the University of Bath, can make it possible to computerize your dog using ...
JUL 31, 2020
Chemistry & Physics
Advancing Nuclear Fusion by Taming the "Chirping" Plasma
JUL 31, 2020
Advancing Nuclear Fusion by Taming the "Chirping" Plasma
2020 turns out to a year of breakthrough for nuclear fusion. The world's largest fusion project ITER (International ...
NOV 27, 2020
Clinical & Molecular DX
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
NOV 27, 2020
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
Getting that nasty rash tested isn’t always a straightforward process. Dermatologists have notoriously long waitli ...
NOV 06, 2020
Technology
phyloFlash: New Software for Microbial Analysis
NOV 06, 2020
phyloFlash: New Software for Microbial Analysis
Scientists at the Max Planck Institute for Marine Microbiology are working on developing an easy technique that will all ...
NOV 20, 2020
Technology
'Motorized Sensors' for Disease Detection
NOV 20, 2020
'Motorized Sensors' for Disease Detection
What would likely increase the survival of a person with a deadly disease? Early detection—although depending on t ...
Loading Comments...