APR 12, 2017 7:08 AM PDT

Your phone's fingerprint lock has a weakness

Image Credit: Getty Images

The fingerprint-based security systems on phones and other electronic devices may be more vulnerable than previously thought.

Fingerprint-based authentication systems feature small sensors that don’t capture a user’s full fingerprint. Instead, they scan and store partial fingerprints, and many phones allow users to use different fingers in their authentication system. Identity is confirmed when a user’s fingerprint matches any one of the saved partial prints.

A new study suggests there could be enough similarities among different people’s partial prints to create a “MasterPrint.”

The MasterPrint concept is similar to a hacker who attempts to crack a PIN-based system using a commonly adopted password such as 1234, says Nasir Memon, professor of computer science and engineering at New York University Tandon. “About 4 percent of the time, the password 1234 will be correct, which is a relatively high probability when you’re just guessing.”

So, researchers set out to see if they could find a MasterPrint that could reveal a similar level of vulnerability. Indeed, they found that certain attributes in human fingerprint patterns were common enough to raise security concerns.

For the study, published in IEEE Transactions on Information Forensics & Security, researchers looked at 8,200 partial fingerprints. Using commercial fingerprint verification software, they found an average of 92 potential MasterPrints for every randomly sampled batch of 800 partial prints. (They defined a MasterPrint as one that matches at least 4 percent of the other prints in the randomly sampled batch.)

They found, however, just one full-fingerprint MasterPrint in a sample of 800 full prints. “Not surprisingly, there’s a much greater chance of falsely matching a partial print than a full one, and most devices rely only on partials for identification,” Memon says.

The team analyzed the attributes of MasterPrints culled from real fingerprint images, and then built an algorithm for creating synthetic partial MasterPrints.

Experiments showed that synthetic partial prints have an even wider matching potential, making them more likely to fool biometric security systems than real partial fingerprints. With their digitally simulated MasterPrints, the team reported successfully matching between 26 and 65 percent of users, depending on how many partial fingerprint impressions were stored for each user and assuming a maximum number of five attempts per authentication. The more partial fingerprints a given smartphone stores for each user, the more vulnerable it is.

While the work was done in a simulated environment, postdoctoral fellow and coauthor Aditi Roy emphasizes that improvements in creating synthetic prints and techniques for transferring digital MasterPrints to physical artifacts in order to spoof a device pose significant security concerns.

The high matching capability of MasterPrints points to the challenges of designing trustworthy fingerprint-based authentication systems and reinforces the need for multi-factor authentication schemes.

“As fingerprint sensors become smaller in size, it is imperative for the resolution of the sensors to be significantly improved in order for them to capture additional fingerprint features,” says coauthor Arun Ross, professor of computer science and engineering at Michigan State University.

“If resolution is not improved, the distinctiveness of a user’s fingerprint will be inevitably compromised. The empirical analysis conducted in this research clearly substantiates this.”

The results of the team’s research are based on minutiae-based matching, which any particular vendor may or may not use, Memon says. Nevertheless, as long as partial fingerprints are used for unlocking devices and multiple partial impressions per finger are stored, the probability of finding MasterPrints increases significantly.

Source: Hallie Kapner for New York University

Original Study DOI: 10.1109/TIFS.2017.2691658

This article was originally published on Futurity.org.

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
APR 28, 2020
Chemistry & Physics
Carbon-Dating Ancient Pottery Just Got Easier
APR 28, 2020
Carbon-Dating Ancient Pottery Just Got Easier
Carbon-dating Pottery Kitchenware Just Got Easier Pottery, especially vessels that our ancestors used to eat and drink w ...
MAY 15, 2020
Technology
New Method for Clean Energy Usage
MAY 15, 2020
New Method for Clean Energy Usage
A study published in the journal Energy and Environmental Materials discusses new technology that may bring us a step cl ...
MAY 25, 2020
Technology
Hemoglobin levels Detected Through Your Smartphone
MAY 25, 2020
Hemoglobin levels Detected Through Your Smartphone
New research shows that by just using your smartphone you can get a diagnosis for oxygen levels in your blood. How so? S ...
MAY 27, 2020
Space & Astronomy
Unfavorable Weather Delays SpaceX's Historic Crewed American Launch
MAY 27, 2020
Unfavorable Weather Delays SpaceX's Historic Crewed American Launch
After officially receiving the green light from NASA to move forward with the first crewed space launch from American so ...
MAY 31, 2020
Space & Astronomy
Another SpaceX Starship Prototype Explodes During Testing
MAY 31, 2020
Another SpaceX Starship Prototype Explodes During Testing
Incomplete Starship prototypes are a common sight if you follow SpaceX’s plethora of rocket-centric projects, but ...
JUL 02, 2020
Chemistry & Physics
Carbon Nanolattices: Lighter Than (Atomic) Feathers, Tougher Than Diamonds
JUL 02, 2020
Carbon Nanolattices: Lighter Than (Atomic) Feathers, Tougher Than Diamonds
Carbon is known for its plentiful allotropes, such as the naturally existing graphite and diamond, as well as synthetic ...
Loading Comments...