APR 13, 2017 07:12 AM PDT

Liquids in thin battery could cool stacks of computer chips

Image Credit: Courtesy IBM Research Zurich

A newly designed “flow” battery could make it possible to stack computer chips like pancakes to save space and energy.

The battery, only around 1.5 millimeters thick, uses two liquid electrolytes to power and cool the chips at the same time.

“The chips are effectively operated with a liquid fuel and produce their own electricity,” says Dimos Poulikakos, a professor of thermodynamics at ETH Zurich.

In conventional (ion) batteries, the energy is stored in two fixed electrodes; but in flow batteries, it is stored in two liquid electrolytes, which are pumped into the flow battery in two separate circuits.

“Flow batteries are in principle rechargeable fuel cells,” explains doctoral student Julian Marschewski.

Flow batteries are usually large-scale and are used mainly in stationary energy storage applications, for instance in combination with wind farms and solar power plants, where they temporarily store the energy produced.

“We are the first scientists to build such a small flow battery so as to combine energy supply and cooling,” says Marschewski.

The output of the new micro-battery also reaches a record-high in terms of its size: 1.4 watts per square centimeter of battery surface. Even if you subtract the power required to pump the liquid electrolytes to the battery, the resulting net power density is still 1 watt per square centimeter.

The electrolyte liquids can also cool a chip. They can dissipate heat amounts many times over what the battery generates as electrical energy—which is converted into heat while the chip is in operation.

How to pump the electrolytes

According to the scientists, the most serious challenge in constructing the new micro-flow batteries was to build them in such a way that they are supplied with electrolytes as efficiently as possible while at the same time keeping the pumping power as low as possible.

“It was important to find the ideal compromise,” says Marschewski.

The electrochemical reactions in the battery occur in two thin and porous electrode layers that are separated by a membrane. Marschewski and his colleagues used 3D-printing technology to build a polymer channel system to press the electrolyte liquid into the porous electrode layer as efficiently as possible. The most suitable of the various designs tested proved to be one made of wedge-shaped convergent channels.

The scientists have now provided an initial proof-of-concept for the construction of a small flow battery. Although the power density of the new micro-flow battery is very high, the electricity produced is still not entirely sufficient to operate a computer chip. In order for the flow battery to be used in a chip stack, it must be further optimized by industry partners.

As the scientists point out, the new approach is also interesting for other applications: in lasers, for example, which have to be supplied with energy and cooled; or for solar cells, where the electricity produced could be stored directly in the battery cell and used later when needed. The system could also keep the operating temperature of the solar cell at the ideal level. In addition, large flow batteries could also be improved with the optimized approach of forcing the electrolyte liquids through the porous electrodes.

Researchers from IBM Research Zurich contributed to the project. The team describes the work in a paper published in Energy and Environmental Science.

Source: ETH Zurich

Original Study DOI: 10.1039/c6ee03192g

This article was originally published on Futurity.org.

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUL 25, 2018
Cell & Molecular Biology
JUL 25, 2018
Super-resolution Microscope Provides Insight Into Alzheimer's Plaques
Alzheimer's disease is the sixth leading cause of death in the US....
AUG 09, 2018
Health & Medicine
AUG 09, 2018
Can Too Much Blue Light Blind You?
Blue light is all around us in the digital devices we use. From cell phones and tablets to laptops and video games, the amount of blue light the average pe...
AUG 30, 2018
Neuroscience
AUG 30, 2018
This Is Not Ordinary Rehab
When Amy Winehouse sang "They tried to make me go to rehab, I said no, no, no" she was referring to substance abuse treatment. Rehab could mean a...
AUG 30, 2018
Cell & Molecular Biology
AUG 30, 2018
Simultaneously Assaying Gene Expression and Chromatin Availability
Traditional tools often focus on one aspect of a cell, but a new technique can assay the expression of 1000s of genes in 1000s of cells at once....
SEP 14, 2018
Earth & The Environment
SEP 14, 2018
How neural networks can help us understand clouds and climate change
A new study published in the Proceedings of the National Academy of Sciences takes a fresh look on just how much clouds are impacting climate models. While...
OCT 07, 2018
Technology
OCT 07, 2018
Multi-Robotic Technology Offers Synchronized 3D-Printing
In Nanyang Technological University, Singapore (NTU Singapore), researchers created technology that can allow two robots to work in unison to 3D-print a co...
Loading Comments...