MAY 22, 2018 1:51 PM PDT

Tiniest House Ever Can Be Built on Strand of Hair

WRITTEN BY: Julia Travers

A French robotics team has built a micro-house to demonstrate their new nanotechnology prowess and a system called the μRobotex nanofactory. It combines several nanotech methods, including gas injection, tiny robots and a focused ion beam. The engineers used the principles of origami to make a very, very small home out of very, very thin silica. It was constructed on the tip of an optical fiber, a thin fiber used to transmit light that is typically thinner than a human hair, which is usually about 0.003 inches thick. The mini-home that not even a mite could live in is about 25 × 25 × 1.2 μm or about 0.001 inches squared.

microhouse, credit: FEMTO-ST Institute

The report on this undertaking, “Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the μRobotex nanofactory,” was published in the Journal of Vacuum Science & Technology A in May 2018. Jean-Yves Rauch, one of the authors of the paper, said:

We decided to build the microhouse on the fiber to show that we are able to realize these microsystem assemblies on top of an optical fiber with high accuracy … For the first time, we were able to realize patterning and assembly with less than 2 nanometers of accuracy, which is a very important result for the robotics and optical community.

The researchers from the Femto-ST Institute in Besançon, France demonstrated their ability to pattern, fold, cut, weld, assemble and stick together several materials into nano-3D structures and systems during their experiments.

The μRobotex nanofactory places and utilizes mini-sensing-elements on the fiber tips to make complex nanoassembly microhouse origami process, credit: FEMTO-ST Institutepossible at smaller scales. This all occurs through carefully controlled robotics in a vacuum chamber.

“The μRobotex station, the new powerful micro- and nanofactory, is based on an Auriga 60 microscope produced by Zeiss … [,which] has a big vacuum chamber of 60 × 60 × 60 cm3,” the study states.

In building the house, they used a silica membrane of 1.2 μm thick, which was coated with a layer of 40–50 nm of chromium. They mimicked origami motions to fold up the membrane into a house shape. An ion beam – a charged particle beam – was used to score, etch and cut the silica so that it could be folded in the correct places – to become walls, for example.

A naphthalene gas was injected as a coating between the walls and roof to stick the surfaces together. The walls have window and door openings and the roof was given a shingle pattern and chimney. 

"It's very challenging to pilot the robot with high accuracy at this cross point between the two beams," Rauch said. Two of the robotics engineers worked simultaneously at numerous computers to build the house. While some of the process is already automated, the French team hopes to automate all of the μRobotex nanofactory’s assembly skills in the future.

“This new technology is an emergent one, which can be used for producing micro- and nanosystems for the future,” the authors conclude.

Sources:

Science Daily

Journal of Vacuum Science & Technology A

About the Author
  • Julia Travers is a writer, artist and teacher. She frequently covers science, tech, conservation and the arts. She enjoys solutions journalism. Find more of her work at jtravers.journoportfolio.com.
You May Also Like
DEC 23, 2019
Space & Astronomy
DEC 23, 2019
Why NASA's Artemis Mission is So Important
If you’ve been following NASA, then you’ve undoubtedly heard about the American space agency’s Artemis mission. Artemis is all about laun...
DEC 21, 2019
Technology
DEC 21, 2019
New Device Helps With Swallowing Disorders
A wearable monitoring device can provide relief for individuals with swallowing disorders. The device was developed to be affordable when hitting the marke...
DEC 31, 2019
Genetics & Genomics
DEC 31, 2019
Using Machine Learning to Analyze Gene Regulation
Computational tools are becoming increasingly important in biological research. Now scientists have found a way to use machine learning in a way that will make sense to biologists....
JAN 20, 2020
Space & Astronomy
JAN 20, 2020
SpaceX Demos Crew Dragon Launch Escape for NASA
SpaceX is one of two major players in NASA’s Commercial Crew program, an attempt to use third-party space companies to bring crewed space launches ba...
JAN 20, 2020
Technology
JAN 20, 2020
Open-Source Software Judges The Accuracy of Cancer Predicting Computer Programs
Cancers are generally composed of diverse cells that vary in genetics—these variations often make a particular cancer more susceptible or resistant t...
FEB 07, 2020
Clinical & Molecular DX
FEB 07, 2020
New diagnostic technology uses levitating proteins
Intrinsic biophysical properties of proteins hold valuable clues about how they function and their role in disease. Take, for example, one of the most comm...
Loading Comments...