APR 22, 2015 08:30 AM PDT

Demo of Hyper-Fast MRI Technique with Wizard of Oz (Brainy!) Tune

WRITTEN BY: Judy O'Rourke
To be able to sing or speak, about 100 different muscles in our chest, neck, jaw, tongue, and lips must work together to produce sound. Researchers investigate how all these mechanisms effortlessly work together-and how they change over time.

"The fact that we can produce all sorts of sounds and we can sing is just amazing to me," says Aaron Johnson, affiliate faculty member in the Bioimaging Science and Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, and assistant professor in speech and hearing science at Illinois.
Below, Aaron Johnson, former professional singer and Beckman Institute affiliate faculty member in the Bioimaging Science and Technology Group, sings
"Sounds are produced by the vibrations of just two little pieces of tissue," he says. That's why I've devoted my whole life to studying it: I think it's just incredible."

The sound of the voice is created in the larynx, located in the neck. When we sing or speak, the vocal folds-the two small pieces of tissue-come together and, as air passes over them, they vibrate, which produces sound.


After 10 years of working as a professional singer in Chicago choruses, Johnson's passion for vocal performance stemmed into research to understand the voice and its neuromuscular system, with a particular interest in the aging voice.

"The neuromuscular system and larynx change and atrophy as we age, and this contributes to a lot of the deficits that we associate with the older voice, such as a weak, strained, or breathy voice," Johnson says. "I'm interested in understanding how these changes occur, and if interventions, like vocal training, can reverse these effects. In order to do this, I need to look at how the muscles of the larynx move in real time."

With the magnetic resonance imaging (MRI) capabilities in Beckman's Biomedical Imaging Center, Johnson can view dynamic images of vocal movement at 100 frames per second-a speed that is far more advanced than any other MRI technique in the world, according to the Center.

"Typically, MRI is able to acquire maybe 10 frames per second or so, but we are able to scan 100 frames per second, without sacrificing the quality of the images," says Brad Sutton, technical director of the Center and associate professor in bioengineering.

The researchers published their technique in the journal Magnetic Resonance in Medicine.

"In order to capture the articulation movements, 100 frames per second is necessary, and that is what makes this technique incredible," Johnson says.

"The technique excels at high spatial and temporal resolution of speech-it's both very detailed and very fast. Often you can have only one these in MR imaging," Sutton says. "We have designed a specialized acquisition method that gathers the necessary data for both space and time in two parts and then combines them to achieve high-quality, high-spatial resolution, and high-speed imaging."

[Source: Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
SEP 30, 2018
Technology
SEP 30, 2018
Enhancing CCTV Images
Utilizing computer-enhanced composite to combine multiple poor quality CCTV images as one, could improve the accuracy of facial recognition systems in the...
OCT 07, 2018
Technology
OCT 07, 2018
Wristband Warns Dangerous UV Exposure
Ultraviolet (UV) radiation consists of electromagnetic radiation of a wavelength shorter in length than the visible region and longer than that of soft X-r...
NOV 26, 2018
Space & Astronomy
NOV 26, 2018
NASA's InSight Lander Safely Touches Down on Mars
If you’ve been paying any attention to NASA lately, then you’ve undoubtedly heard about the space agency’s InSight mission for Mars. NASA...
NOV 27, 2018
Space & Astronomy
NOV 27, 2018
ESA Announces Official Launch Timeframe for Exoplanet-Characterizing CHEOPS Satellite
When you think about exoplanet research, NASA’s now-retired Kepler Space Telescope comes to mind. Kepler did a lot of the heavy lifting concerning ex...
NOV 28, 2018
Space & Astronomy
NOV 28, 2018
NASA Lucy Mission to Visit Jupiter's Trojan Asteroids is Poised to Launch in 2021
Why are we here, and where did we come from? Humankind has been asking these questions since the dawn of time, but legitimate answers appear to be highly e...
NOV 29, 2018
Earth & The Environment
NOV 29, 2018
How serious are we about solar geoengineering?
Just how close are we exactly to launching a large-scale solar geoengineering project? That’s the question a new study published recently in Environm...
Loading Comments...