MENU

Acoustically Targeted Molecular Neuromodulation

Presented at: Neuroscience 2020
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

The study of biological function in intact organisms and the development of targeted cellular therapeutics necessitate methods to image and control cellular function in vivo. Technologies such as optogenetics serve this purpose in small, translucent specimens or surgically accessed organs, but are limited by the poor penetration of light into deeper tissues. In contrast, non-invasive techniques such as ultrasound – while based on energy forms that penetrate tissue effectively – are not as effectively coupled to cellular function. Our work attempts to bridge this gap by engineering biomolecules with the appropriate physical properties to interact with sound waves, and by enhancing the transport of engineered biomolecules into tissues such as the brain. In this talk, I will describe our work on Acoustically Targeted Chemogenetics (ATAC) – a technology that couples ultrasound with molecular engineering to enable non-invasive control of specific neurons. In this approach, we use focused ultrasound to transiently open the blood–brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, we showed that this approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus (1). Now we are adapting and improving this technology for application in larger species.

(1) Szablowski JO, Lue B, Lee-Gosselin A, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nature Biomedical Engineering 2, 475-484 (2018).

Learning Objectives:

1. Introduce the technology of acoustically targeted chemogenetics.

2. Describe the use of ultrasound in modulating neural circuits.

 


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
APR 21, 2021 5:00 PM CEST
APR 21, 2021 5:00 PM CEST
Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
Loading Comments...
Show Resources