MAY 12, 2016 10:30 AM PDT

Antha: An Operating System for Seamlessly Linking Experimental Design and Lab Automation

Speaker

Abstract

Working with biology currently takes too long, costs too much, and fails too often. At the core of this is the complexity of the systems we are trying to understand, compounded by a lack of reproducibility in our daily lab practices and poor traceability of what was actually done to perform an experiment. Antha is a high level, open source programming language for unambiguously defining lab protocols, which can then be combined into sophisticated workflows for biological investigations.  Antha operating system (AnthaOS) takes these workflows and compiles them into the computer code required to directly run the lab automation and analytical equipment needed for each experiment.  AnthaOS tracks the flow of information and physical samples through the workflows, so that every piece of data generated is linked to full provenance of the experimental procedure that generated it.  Antha relies on a range of drivers to talk to different lab equipment, meaning that it is interoperable between different makes and models of lab hardware.

By linking diverse lab equipment and defined protocols in this way, Antha enables the rapid and flexible programming of lab automation, so large and sophisticated experiments can be easily designed, run and analysed.  These include high dimensional experimental designs, which are an exceptionally powerful way of addressing biological complexity and enabling the development of efficient and robust processes.

This talk will present case studies on how high dimensional experimental designs can unpick high order interactions between genetics and environment in biological systems, and how these methods can also be used to optimize lab protocols.

Learning objectives:

  • An overview of the power of using high dimensional experimental designs for characterization and optimization of biological processes and protocols.
  • How high level languages combined with lab automation can enable these complex experiments that unpick biological complexity.

Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
OCT 13, 2022 9:00 AM +08
OCT 13, 2022 9:00 AM +08
First Broadcast: Date: October 12, 2022 Time: 8:00am PDT, 11:00am EDT Second Broadcast: Date: October 12, 2022 Time: 9:00am SGT The new Embedded CryoSPARC Live, now fully integrated with t...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
AUG 10, 2022 10:00 AM PDT
AUG 10, 2022 10:00 AM PDT
Date: August 10, 2022 Time: 10:00am PDT, 1:00pm EDT The global pandemic has increased focus and scrutiny on molecular diagnostic assay development, resulting in a need for assays that provid...
NOV 09, 2022 8:00 AM PST
C.E. CREDITS
NOV 09, 2022 8:00 AM PST
Date: November 09, 2022 Time: 8:00am (PST), 11:00am (EST), 5:00pm (CET) The field of cell and gene therapy is rapidly growing. In particular, the use of lentiviruses in CAR-T applications is...
MAY 12, 2016 10:30 AM PDT

Antha: An Operating System for Seamlessly Linking Experimental Design and Lab Automation



Show Resources
Loading Comments...
Show Resources