MENU

Bionano Genome Imaging: unbiased, genome-wide structural variation detection in genetic disease and cancer, down to 1% allele fraction

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Sr. Director of Scientific Affairs & Marketing, Bionano Genomics
    Biography
      Dr. Sven Bocklandt is a human geneticist with a background in gene discovery. He received his PhD from the University of Antwerp, Belgium, based on research on the genetic components of brain sexual differentiation performed at the National Cancer Institute, and at the University of California Los Angeles. As Director of Scientific Affairs and Marketing at Bionano Genomics, he focuses on the scientific discoveries made on the Bionano platform and on Bionano's performance in genetic disease and cancer diagnostics.

    Abstract

    The diagnostic yield in genetic disease has seen very little improvement over the last few decades, despite the introduction of whole genome sequencing. The Bionano Genomics platform for genome imaging offers an extremely long-read technology, providing unmatched sensitivity and specificity to detect structural variation, genome-wide, at low cost. Our de novo maps can resolve complex repetitive regions, identify Copy Number Variations, and elucidate genome-wide structural variation like balanced/unbalanced translocations, inversions, and indels with much higher sensitivity and precision than sequencing-based methods. For mosaic samples, Bionano’s high coverage depth allows for the detection of any type of structural variant with more than 90% sensitivity, present in as little as 10% of the cells, genome wide, and completely unbiased. Examples will be presented of how Bionano’s platform is helping solve genetic mysteries for patients with a variety of genetic disorders by detecting genomic rearrangements and structural variants missed by NGS and cytogenetic methods.

    Learning Objectives:

    1. Learn why the complexity and repetitive structure of the human genome makes it impossible to detect all structural variants using short-read sequencing

    2. Learn how high coverage optical mapping enables detection of structural variants at extremely low allele fraction


    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    Loading Comments...
    Show Resources
    Attendees
    • See more