MAR 24, 2016 10:00 AM PDT

BioPlex: a protein interaction network created from thousands of protein immunopurifications

Speaker
  • Professor in the Department of Cell Biology, Harvard Medical School
    Biography
      Steven Gygi received his Ph.D. from the University of Utah in the area of Pharmacology and Toxicology. He performed a postdoctoral fellowship with Ruedi Aebersold at the University of Washington in 1996. He joined the faculty at Harvard Medical School in 2000. He is currently a Professor in the Department of Cell Biology. Dr. Gygi is a leading technologist who uses mass spectrometry to answer fundamental questions in both normal and abnormal biology. He specializes in instrumentation advances for global cellular protein measurements.

    Abstract
    DATE:  March 24, 2016
    TIME:   10am Pacific time, 1pm Eastern time

    Protein-protein interactions form a network whose structure drives cellular function and whose organization informs all biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions, 86% unknown, among 7,668 proteins. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. Network structure reveals 4 key features: 1) BioPlex subdivides into >300 communities, uniting proteins with shared function. 2) Interactions predict 2,968 associations among co-occurring Pfam domains. 3) Attributes including localization, biological process, and molecular function were determined for thousands of proteins - many uncharacterized. 4) BioPlex reveals interactions of biological or clinical significance. To demonstrate complementary studies inspired by BioPlex, we interrogated interactions of wild-type and mutant VAPB variants implicated in familial Amyotrophic Lateral Sclerosis. The network provides a framework for hypothesis generation and refinement as applied to protein function, mechanism, and activity.
     
    Learning Objectives:
    1. Learn how affinity purifications can be performed at scale and the associated caveats.
    2. Understand how an interaction network can be used to predict a protein’s cellular properties.

    Show Resources
    You May Also Like
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    AUG 18, 2020 10:00 AM PDT
    C.E. CREDITS
    AUG 18, 2020 10:00 AM PDT
    DATE: August 18, 2020 TIME: 10:00am PT Get deeper understanding of gene expression patterns by using assays that retain spatial organization at single cell resolution! Come learn about the n...
    DEC 03, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 03, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: December 3, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Scientific cameras used in applications such as light sheet microscopy and calcium/voltage imaging put a large emphasis on high speed...
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    Loading Comments...
    Show Resources
    Attendees
    • See more