MAR 24, 2016 10:00 AM PDT

BioPlex: a protein interaction network created from thousands of protein immunopurifications

Speaker
  • Professor in the Department of Cell Biology, Harvard Medical School
    Biography
      Steven Gygi received his Ph.D. from the University of Utah in the area of Pharmacology and Toxicology. He performed a postdoctoral fellowship with Ruedi Aebersold at the University of Washington in 1996. He joined the faculty at Harvard Medical School in 2000. He is currently a Professor in the Department of Cell Biology. Dr. Gygi is a leading technologist who uses mass spectrometry to answer fundamental questions in both normal and abnormal biology. He specializes in instrumentation advances for global cellular protein measurements.

    Abstract
    DATE:  March 24, 2016
    TIME:   10am Pacific time, 1pm Eastern time

    Protein-protein interactions form a network whose structure drives cellular function and whose organization informs all biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions, 86% unknown, among 7,668 proteins. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. Network structure reveals 4 key features: 1) BioPlex subdivides into >300 communities, uniting proteins with shared function. 2) Interactions predict 2,968 associations among co-occurring Pfam domains. 3) Attributes including localization, biological process, and molecular function were determined for thousands of proteins - many uncharacterized. 4) BioPlex reveals interactions of biological or clinical significance. To demonstrate complementary studies inspired by BioPlex, we interrogated interactions of wild-type and mutant VAPB variants implicated in familial Amyotrophic Lateral Sclerosis. The network provides a framework for hypothesis generation and refinement as applied to protein function, mechanism, and activity.
     
    Learning Objectives:
    1. Learn how affinity purifications can be performed at scale and the associated caveats.
    2. Understand how an interaction network can be used to predict a protein’s cellular properties.

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    AUG 18, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    AUG 18, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: August 18, 2020 TIME: 10:00am PT Get deeper understanding of gene expression patterns by using assays that retain spatial organization at single cell resolution! Come learn about the n...
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    AUG 27, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    AUG 27, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: August 27, 2020 TIME: 7:00am PT Novel anti-viral medications, including biologics and small molecule inhibitors, as well as serologic diagnostic tool sets are in urgent demand to fight...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    JUN 09, 2020 3:00 PM CEST
    C.E. CREDITS
    JUN 09, 2020 3:00 PM CEST
    DATE: June 9, 2020 TIME: 6am PT, 9am ET, 3pm CEST The importance of disposable plastic consumables and their overall impact on the experimental workflow of qPCR has been taken into considera...
    Loading Comments...
    Show Resources
    Attendees
    • See more