MAR 13, 2019 8:40 AM PDT

BRAIN Initiative Scientific Updates: Mechanisms of Rapid, Flexible Cognitive Control in Human Prefrontal Cortex

Presented at: Neuroscience 2019
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Associate Professor, Vice-Chair of Clinical Research, Neurosurgery, Baylor College of Medicine
    Biography
      Sameer Sheth, MD, PhD is Associate Professor of Neurosurgery, Vice-Chair of Clinical Research, and Director of Psychiatric Neurosurgery in the Department of Neurosurgery, Baylor College of Medicine. Clinically, Dr. Sheth specializes in stereotactic/functional neurosurgery, including the surgical treatment of movement disorders, epilepsy, and psychiatric disorders. Dr. Sheth's research focuses on both the study of cognitive neurophysiology,as well as the development of neuromodulatory treatments for neurological and psychiatric disorders.

    Abstract

    Humans have a remarkable ability to flexibly interact with the environment. A compelling demonstration of this cognitive flexibility is our ability to perform complex, yet previously un-practiced tasks successfully on the first attempt. We refer to this ability as ‘ad hoc self-programming’: ‘ad hoc’ because these new behavioral repertoires are cobbled together on the fly, based on immediate demand, and then discarded when no longer necessary; ‘self-programming’ because the brain has to configure itself appropriately based on task demands and some combination of prior experience and/or instruction. This type of learning differs importantly from trial-and-error learning, in which responses are sculpted incrementally, based on feedback from previous attempts. In comparison to trial-and-error learning, much less is known about ad hoc self-programmed learning, but it clearly represents a fundamental feature of human intelligence. The overall goal of our research proposal is to understand the neurophysiological and computational basis for ad hoc self-programmed behavior. To do so, we leverage critical advances in neuroscience, neurosurgery, engineering, and computational modelling, including: 1) availability of a large-scale recording platform enabling simultaneous recordings of 100+ neurons from the cortical surface; 2) opportunities to record from lateral prefrontal cortex (lPFC) in human subjects engaged in a custom-designed behavioral task; 3) developments borrowed from the artificial intelligence community to create advanced neural network models of complex cognitive processes.

    We expect that this innovative approach will revolutionize our understanding of this amazing capacity for immediate, configurable learning that characterizes our everyday lives. In doing so, we will develop new strategies to study mechanisms of rapid, flexible cognitive control in general. A better understanding of human cognitive control and its nuanced capacities will naturally translate into an appreciation of deficiencies in these processes, and how they manifest in the form of neuropsychiatric disorders. This appreciation can then lead to the development of rational, targeted therapies.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    NOV 07, 2019 10:00 AM PST
    C.E. CREDITS
    NOV 07, 2019 10:00 AM PST
    DATE: November 7, 2019TIME: 10:00am PST, 1:00pm EST Studying the pathogenesis of diabetes requires detailed analysis of the pancreatic islet microenvironment and its numerous c...
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    Loading Comments...
    Show Resources
    Attendees