OCT 17, 2013 12:00 PM PDT

Cells in Action: Why Cancer Cells Leave the Tumors?

C.E. Credits: CE
Speaker
  • Assistant Professor, Department of Surgery,, Massachusetts General Hospital and Harvard Medical School
    Biography
      Dr. Irimia is an Assistant Professor in the Department of Surgery at the Massachusetts General Hospital, Shriners Hospitals for Children in Boston, and Harvard Medical School. He is leading a research program that is focused on studying the roles of cellular migration in health and disease. Dr. Irimia is interested in probing the role of cancer cell migration during cancer invasion and tumor metastasis. He is also very interested in understanding how the ability of white blood cells to move and protect against microbes is being affected during the systemic inflammation responses after burn and trauma injuries. For this research, he is employing the most advanced microscale technologies which enable us to design new tools and measure cell migration with better precision than ever before.

    Abstract

    Invading cancer cells leave the tumor to form distant metastases and are ultimately responsible for 90% of deaths in cancer. Reducing the ability of cancer cells to invade and metastasize could extend the life of cancer patients. However, our current understanding of the conditions that trigger and guide the invasion of cancer cells is insufficient and our abilities to interfere with these processes are limited. By using novel microfluidic tools, we uncovered an unexpected ability of cancer cells to navigate and exit microscopic mazes along the shortest path. To explain this behavior, we propose a novel mechanism that guides cancer cell migration. This mechanism depends on the generation of spatial chemical gradients by the cancer cell themselves, through the competition between epidermal growth factor (EGF) uptake by the cells and the restricted diffusion of EGF from surrounding microenvironment to the cells. Employing this strategy when placed in uniform but confined environments, cancer cells can self-generate spatial gradients of EGF, effectively mapping the environment, and guiding their own escape from the confinement. Better understanding of the cancer cell guidance strategy by self-generated gradients could lead to approaches for restricting the migration of malignant cells to delay local invasion and distant metastases. Learning objectives: - Identify the environment settings that trigger self-guided cell migration; - Recognize the conditions that favor cancer cell invasion; - Predict the patterns of cancer cell migration in various conditions of confinement; - Suggest interventions that may perturb the self-guidance of cancer cells.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    DEC 03, 2020 4:30 PM PST
    C.E. CREDITS
    DEC 03, 2020 4:30 PM PST
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    JAN 21, 2021 8:00 AM PST
    JAN 21, 2021 8:00 AM PST
    Date: January 21, 2021 Time: 8:00am (PST), 11:00am (EST) Today, critical reagent characterization is a key component in the overall workflow to establish robust ligand binding assays (e.g.,...
    OCT 17, 2013 12:00 PM PDT

    Cells in Action: Why Cancer Cells Leave the Tumors?

    C.E. Credits: CE

    Specialty

    Dna

    Cancer Diagnostics

    Immunology

    Cancer Research

    Cancer Therapeutics

    Biotechnology

    Antibodies

    Pharmacology

    Cell Culture

    Oncology

    Immunotherapy

    Gene Expression

    Cancer

    Dna Sequencing

    Immuno-Oncology

    Geography

    Europe67%

    North America33%

    Registration Source

    Website Visitors100%

    Job Title

    Student67%

    Facility/Department Manager33%

    Organization

    Academic Institution67%

    Medical Center33%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more