MENU
AUG 30, 2016 8:00 AM PDT

Challenge toward Clinical Trial for Spinal Cord Injury using iPS Cell

Speaker
  • Dean, Professor, Department of Physiology, Keio University School of Medicine, Japan
    Biography
      Professor Hideyuki Okano is Dean of Keio University School of Medicine and Team Leader of Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN. In addition, Dr. Okano holds important posts, including University of New South Wales Visiting Professor (Since 2009), University of Queensland Honorary Professor in the Queensland Brain Institute (Since 2008), and Professor of Department of Physiology, Keio University School of Medicine (Since 2001). In the past he served as Professor of Osaka University Graduate School of Medicine (Department of Neuroscience, 1997-2001) and Professor of University of Tsukuba (Department of Molecular Neurobiology, Institute of Basic Medical Sciences, 1994-1997). He also did research at the University ofTokyo and The Johns Hopkins University School of Medicine as instructor. Dr. Okano has been the recipient of numerous awards, most recently including the Molecular Brain Award (2016), Balz Award (2014) and the Medal with Purple Ribbon (from the Emperor of Japan, 2009). His scientific research area is basic neuroscience, stem cell, and regenerative medicine including iPSC, NSC, and clinical applications for spinal cord injury.

    Abstract
    In our previous preclinical studies, when neural stem progenitor cells (NS/PCs)-derived from hiPSCs were transplanted into mouse or non-human primate spinal cord injury (SCI) models, long-term restoration of motor function was induced without tumorigenicity, by selecting suitable hiPSCs-lines (Nori et al., 2011; Okano et al., 2013; Okano and Yamanaka, 2014). However, NS/PCs derived from certain iPSC-lines gave rise to late-onset tumorigenicity after transplantation (Tsuji et al., 2010; Nori et al., 2015). Here, to preclude these risks before clinical application, we developed molecular characterization of hiPSCs and hiPSC-derived NS/PCs together with transplantation to injured spinal cord of immune-deficient mice (Nori et al., 2015; Sugai et al., 2016). We investigated global methylation status of tumorigenic hiPSC-NS/PCs and found that aberrant hypermethylation of a tumor suppressor gene was induced along the passage. For addressing the safety issue, remnant immature cells or tumor-initiating cells should be removed or induced into more mature cell types to avoid adverse effects of hiPSC-NS/PC transplantation. Because Notch signaling plays a role in maintaining NS/PCs, we evaluated the effects of γ-secretase inhibitor (GSI) and found that pretreating hiPSC-NS/PCs with GSI promoted neuronal differentiation and maturation in vitro, and GSI pretreatment also reduced the overgrowth of transplanted hiPSC-NS/PCs and inhibited the deterioration of motor function in vivo (Okubo et al., 2016). Based on these findings, we are establishing methods of production, selection and transplantation of clinical grade NS/PCs stocks-derived from human iPSC stocks generated from HLA-homozygous super-donors by CiRA. We aim to commence clinical research (Phase I–IIa) trials for treatments of sub-acute phase SCI using hiPSCs-derived NS/PCs in the near future.
     

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    MAR 18, 2021 8:00 AM PDT
    C.E. CREDITS
    MAR 18, 2021 8:00 AM PDT
    DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
    Loading Comments...
    Show Resources
    Attendees
    • See more