AUG 30, 2016 08:00 AM PDT

Challenge toward Clinical Trial for Spinal Cord Injury using iPS Cell

Speakers
  • Dean, Professor, Department of Physiology, Keio University School of Medicine, Japan
    Biography
      Professor Hideyuki Okano is Dean of Keio University School of Medicine and Team Leader of Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN. In addition, Dr. Okano holds important posts, including University of New South Wales Visiting Professor (Since 2009), University of Queensland Honorary Professor in the Queensland Brain Institute (Since 2008), and Professor of Department of Physiology, Keio University School of Medicine (Since 2001). In the past he served as Professor of Osaka University Graduate School of Medicine (Department of Neuroscience, 1997-2001) and Professor of University of Tsukuba (Department of Molecular Neurobiology, Institute of Basic Medical Sciences, 1994-1997). He also did research at the University ofTokyo and The Johns Hopkins University School of Medicine as instructor. Dr. Okano has been the recipient of numerous awards, most recently including the Molecular Brain Award (2016), Balz Award (2014) and the Medal with Purple Ribbon (from the Emperor of Japan, 2009). His scientific research area is basic neuroscience, stem cell, and regenerative medicine including iPSC, NSC, and clinical applications for spinal cord injury.

    Abstract:
    In our previous preclinical studies, when neural stem progenitor cells (NS/PCs)-derived from hiPSCs were transplanted into mouse or non-human primate spinal cord injury (SCI) models, long-term restoration of motor function was induced without tumorigenicity, by selecting suitable hiPSCs-lines (Nori et al., 2011; Okano et al., 2013; Okano and Yamanaka, 2014). However, NS/PCs derived from certain iPSC-lines gave rise to late-onset tumorigenicity after transplantation (Tsuji et al., 2010; Nori et al., 2015). Here, to preclude these risks before clinical application, we developed molecular characterization of hiPSCs and hiPSC-derived NS/PCs together with transplantation to injured spinal cord of immune-deficient mice (Nori et al., 2015; Sugai et al., 2016). We investigated global methylation status of tumorigenic hiPSC-NS/PCs and found that aberrant hypermethylation of a tumor suppressor gene was induced along the passage. For addressing the safety issue, remnant immature cells or tumor-initiating cells should be removed or induced into more mature cell types to avoid adverse effects of hiPSC-NS/PC transplantation. Because Notch signaling plays a role in maintaining NS/PCs, we evaluated the effects of γ-secretase inhibitor (GSI) and found that pretreating hiPSC-NS/PCs with GSI promoted neuronal differentiation and maturation in vitro, and GSI pretreatment also reduced the overgrowth of transplanted hiPSC-NS/PCs and inhibited the deterioration of motor function in vivo (Okubo et al., 2016). Based on these findings, we are establishing methods of production, selection and transplantation of clinical grade NS/PCs stocks-derived from human iPSC stocks generated from HLA-homozygous super-donors by CiRA. We aim to commence clinical research (Phase I–IIa) trials for treatments of sub-acute phase SCI using hiPSCs-derived NS/PCs in the near future.
     

    Show Resources
    You May Also Like
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 18, 2019 04:00 PM CEST
    C.E. CREDITS
    JUN 18, 2019 04:00 PM CEST
    DATE: June 18, 2019TIME: 7:00am PDT, 10:00 EDT, 4:00pm CET PSCs represent an important tool in a wide range of applications, including basic research, disease modeling, drug...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    Loading Comments...
    Show Resources