MAR 20, 2014 1:00 PM PDT

Cholinergic modulation of visual perception in rodents

Presented at: Neuroscience
Speakers
  • Full professor Ecole doptomtrie, Universit de Montral, Qubec, Canada
    Biography
      Dr Vaucher obtained her PhD Neurosciences at Universit Paris VI. CNRS UA 641, Paris / Institut Neurologique de Montral, Qubec. She has completed two post-doctoral formations in the field of the involvement of the cholnergic deficit in Alzheimer's disease. The aim of her research group is to determine the role of neurotransmitters in the visual processing, especially the role of neuromodulators such as acetylcholine in modifying the cortical representation of specific stimuli and the cortical plasticity. This project will extend the basic knowledge of how the visual stimuli are integrated by the cortical networks (including learning, memory and attentional processes) and will permit to use pharmacological agents as cognitive and/or sensory enhancers to facilitate sight recovery and cortical plasticity.

    Abstract:

    The cholinergic system is a potent neuromodulatory system which plays a critical role in cortical plasticity, attention and learning. The cholinergic activation of the cortex increases the signal-to-noise ratio, cue detection ability and the strength of the thalamocortical afferences relative to cortico-cortical signaling. These changes facilitate the treatment of a novel stimulus.
    We are particularly interested in the role of the cholinergic system in visual processing and cortical plasticity of the visual cortex (V1). Our laboratory uses a large panel of techniques behaviour, neurophysiology, neuroanatomy and optical imaging - to examine this issue from a cellular to an integrated and behavioural level. We have recently demonstrated that acetylcholine (ACh) was released in V1 during a pattern visual activation. The cholinergic deficit impaired the visually-induced neuronal activity in the layer 4 of V1 and the performance of the rat in a visual learning task. Moreover, deletion of different subtypes of muscarinic receptors in KO mice selectively altered the intrinsic organization of V1 suggesting a strong involvement of the muscarinic transmission in the detectability of visual stimuli. The transient coupling of cholinergic and pattern visual stimulation induced a long-term enhancement of the visual evoked potentials mediated by muscarinic, nicotinic and NMDA receptors. This cholinergic-induced long-term modifications of the cortical functioning also improved visual perception. Activation of the cholinergic system paired with visual stimulation over two weeks induced a long-term increase of visual evoked potentials in V1 and of the visual acuity of the rats.
    Our results demonstrate that the pairing of the cholinergic system activation with visual training improved the visual performance of the animals and functional organization of V1. This study opens the possibility of boosting V1 plasticity and facilitating visual recovery.
    Supported by CIHR, NSERC, FRQS Vision Research Network.


    Show Resources
    You May Also Like
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    LIVE NOW!
    C.E. CREDITS
    LIVE NOW!
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    FEB 19, 2020 11:00 AM PST
    C.E. CREDITS
    FEB 19, 2020 11:00 AM PST
    DATE: February 19, 2020TIME: 11:00am PST, 2:00pm EST...
    Loading Comments...
    Show Resources