FEB 22, 2018 12:00 PM PST

Commercializing Nanomedicine for Improving Human Health: Not Just Hype, It Is Really Happening!

Presented at: Drug Discovery 2018
Speaker
  • Professor and Department Chair, Chemical Engineering, Art Zafiropoulo Chair in Engineering, Affiliated Faculty, Bioengineering, Northeastern University, College of Engineering
    Biography
      Thomas J. Webster's (H index: 80, Google Scholar) degrees are in chemical engineering from the University of Pittsburgh (B.S., 1995) and in biomedical engineering from Rensselaer Polytechnic Institute (M.S., 1997; Ph.D., 2000). Prof. Webster is the current director of the Nanomedicine Laboratories (currently at 23 members) and has completed extensive studies on the use of nanophase materials in medicine. He pioneered the use of nanomaterials to increase tissue growth, inhibit infection, and decrease inflammation. He was appointed Department Chair of Chemical Engineering at Northeastern University in 2012 in which the Department recently broke the record for the fastest increase in ranking over a five year period from the U.S. News and World Report. In his 17 years in academics, Prof. Webster has graduated/supervised over 149 visiting faculty, clinical fellows, post-doctoral students, and thesis completing B.S., M.S., and Ph.D. students. To date, his lab group has generated over 13 textbooks, 68 book chapters, 376 invited presentations, at least 503 peer-reviewed literature articles and/or conference proceedings, at least 767 conference presentations, and 42 provisional or full patents. His research has led to the formation of 12 companies with 4 FDA approved nanomedicine products. He is the founding editor-in-chief of the International Journal of Nanomedicine (the first open-access, international journal in nanomedicine which has a 5-year impact factor of 5.03). Prof. Webster currently directs or co-directs several centers in the area of biomaterials: The Center for Natural and Tropical Biomaterials (Medellin, Colombia), The Center for Pico and Nanomedicine (Wenzhou China), and The International Materials Research Center (Soochow, China). He was named the Art Zafiropoulo Chair at Northeastern University for his contributions to nanomedicine in 2013. Prof. Webster has received numerous honors including but not limited to: 2012, Fellow, American Institute for Medical and Biological Engineering (AIMBE, representing the top 2% of all medical and biological engineers); 2013, Fellow, Biomedical Engineering Society; 2015, Wenzhou 580 Award; 2015, Zheijang 1000 Talent Program; 2016, International Materials Research Chinese Academy of Science Lee-Hsun Lecture Award; 2016, International College of Fellows, Biomaterials Science and Engineering; and 2016, Acta Biomaterialia Silver Award. He also served as the President of the U.S. Society For Biomaterials. He has appeared on BBC, NBC, ABC, Fox News, the Weather Channel, the Discovery Channel, and the recent special 'Year Million' TV series on National Geographic talking about the future of medicine and science.

    Abstract

    There is an acute shortage of organs due to disease, trauma, congenital defects, and most importantly, age related maladies. The synthetic materials used in tissue engineering applications today are typically composed of millimeter or micron sized particles and/or fiber dimensions. Although human cells are on the micron scale, their individual components, e.g. proteins, are composed of nanometer features. By modifying only the nanofeatures on material surfaces without changing surface chemistry, it is possible to increase tissue growth of any human tissue by controlling the endogenous adsorption of adhesive proteins onto the material surface. In addition, our group has shown that these same nanofeatures and nano-modifications can reduce bacterial growth without using antibiotics, which may further accelerate the growth of antibiotic resistant microbes. Inflammation can also be decreased through the use of nanomaterials. Finally, nanomedicine has been shown to stimulate the growth and differentiation of stem cells, which may someday be used to treat incurable disorders, such as neural damage.  This strategy also accelerates FDA approval and commercialization efforts since new chemistries are not proposed, rather chemistries already approved by the FDA with altered nanoscale features. This invited talk will highlight some of the advancements and emphasize current nanomaterials approved by the FDA for human implantation.  


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    APR 01, 2021 8:00 AM PDT
    C.E. CREDITS
    APR 01, 2021 8:00 AM PDT
    Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    FEB 22, 2018 12:00 PM PST

    Commercializing Nanomedicine for Improving Human Health: Not Just Hype, It Is Really Happening!

    Presented at: Drug Discovery 2018

    Specialty

    Research And Development

    Research

    Personalized Medicine

    Bioinformatics

    University

    Drug Development

    Gene

    Gene Sequencing

    Health

    Biotechnology

    Cell

    Protein

    Immunology

    Molecular Diagnostics

    Human Genetics

    Geography

    Asia80%

    Europe20%

    Registration Source

    Website Visitors100%

    Job Title

    Student67%

    Medical Laboratory Technician33%

    Organization

    Academic Institution40%

    Manufacturer - Other20%

    Research Institute20%

    Other20%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more