MAY 09, 2019 9:00 AM PDT

Completing the Human Genome: The Progress and Challenge of Satellite DNA Assembly

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Assistant Research Scientist; UCSC Genomics Institute, University of California, Santa Cruz
    Biography

      Dr. Miga is an Assistant Research Scientist at the UCSC Genomics Institute. In 2018, she co-founded the Telomere-to-Telomere (T2T) Consortium, an open, community-based effort to generate the first complete assembly of a human genome. Additionally, Dr. Miga is the Director of the Data Production Center for the Human Pangenome Reference Consortium (HPRC). Central to Dr. Miga's research program is the emphasis on satellite DNA biology and the use of long-read and new genome technologies to construct high-quality genetics and epigenetic maps of human peri/centromeric regions.


    Abstract

    Release of the first human genome assembly was a landmark achievement, and after nearly two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has yet been finished end to end, and hundreds of gaps persist across the genome. This is a fundamental problem because these gaps vary in repeat structure and copy number between individuals, which can affect genome stability and health. 

    To address this challenge, I will present a whole-genome de novo assembly that surpasses the continuity of GRCh38, along with the first complete, telomere-to-telomere assembly of a human X chromosome. We have collected 40X coverage of ultra-long Oxford Nanopore sequencing for the CHM13hTERT cell line, including 44 Gb of sequence in reads >100 kb and a maximum read length exceeding 1 Mb.  This unprecedented coverage of ultra-long reads enabled the resolution of most repeats in the genome, including large fractions of the centromeric satellite arrays and short arms of the acrocentrics. Using this assembly as a basis, we chose to manually finish the X chromosome. These results demonstrate that it is now possible to finish entire human chromosomes without gaps, and our future work (Telomere-to-telomere, T2T Consortium) will focus on completing and validating the remainder of the genome.

    Finally, centromeric sequences are expected to vary in repeat composition and copy number between individuals in the population. To study the extent of this variation, I have performed a comprehensive study of centromere sequence structural variation using a panel of high-coverage, long read datasets from individuals from diverse populations. Efforts to increase production of UL-read sequencing – thereby dramatically increasing our ability to characterize satellite array structure – using the PromethION sequencing platform from Oxford Nanopore will be discussed.

    Learning Objectives: 

    1. Human centromere sequence structure and organization.
    2. Long-read sequencing and scaffolding assembly strategies to complete human chromosome assemblies.
     


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    MAY 09, 2019 9:00 AM PDT

    Completing the Human Genome: The Progress and Challenge of Satellite DNA Assembly

    C.E. Credits: P.A.C.E. CE Florida CE

    Specialty

    Immunology

    Dna Sequencing

    Genomics

    Molecular Biology

    Cell Biology

    Bioinformatics

    Cancer Research

    Laboratory Testing

    Biochemistry

    Clinical Research

    Molecular Diagnostics

    Antibodies

    Gene Expression

    Biotechnology

    Diagnostics

    Geography

    North America67%

    Europe17%

    Africa8%

    Registration Source

    Website Visitors100%

    Job Title

    Medical Laboratory Technician33%

    Student22%

    Research Scientist22%

    Executive11%

    Engineer11%

    Organization

    Academic Institution33%

    Clinical Laboratory17%

    Hospital8%

    Biotech Company8%

    Consultant8%

    Research Institute8%

    Ambulatory Care8%


    Show Resources
    Loading Comments...
    Show Resources