MENU

Deciphering the spreading of neuropathologies in neuronal circuits using a high capacity microfluidics platform

Presented at: Neuroscience 2020
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

Misfolded and accumulated neurodegenerative disease associated proteins (NDAPs, such as tau and alpha-synuclein) represent the major pathological hallmark in Alzheimer’s and Parkinson’s disease patient brain cells. Compelling evidence indicate that spreading of NDAPs within the patient brain occurs via interconnected neurons. While progress in deciphering the mechanisms of neuronal uptake of NDAPs and NDAP-caused protein aggregation has been made, our knowledge about other cellular processes, such as axonal uptake and transport of NDAPs as well as neuron-to-neuron transfer of NDAPs, is still limited. In the presentation, I will present Cellectricon’s approach to decipher individual cellular processes that are occurring in progressive proteopathies in cortical neuronal circuits. We apply an experimental in vitro paradigm to generate compartmentalized neuronal cells by culturing primary mouse cortical neurons in high capacity microfluidic co-culture plates. By using fluorescently labelled, seed competent NDAPs and high-content imaging, we can assess NDAP axonal uptake, axonal transport and protein aggregation in cortical neurons. By combining our neuronal compartmentalisation approach with neuronal labelling techniques, we aim to decipher the spreading mechanisms of neuropathologies in neuronal circuits. We aim to provide insights into specific disease-relevant neuronal processes, which can pave the way for novel intervention approaches for modulation of progressive proteopathies.

Learning Objectives:

1. Introduce the audience the principles of progressive neurodegenerative diseases

2. Present a concept that enables the assessment of specific cellular processes involved in progressive neurodegenerative diseases

3. Present data obtained from Cellectricon´s high-capacity microfluidics platform showing alpha-synuclein axonal uptake, transport and caused protein aggregation in a sub-population of primary cortical neurons


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
SEP 29, 2021 11:00 AM PDT
C.E. CREDITS
SEP 29, 2021 11:00 AM PDT
Date: Septembr 29, 2021 Time: 11:00am (PDT), 2:00pm (EDT) 3D cell models are becoming increasingly popular for studying complex biological effects, tissue functionality, and diseases. While...
Loading Comments...
Show Resources