SEP 20, 2018 9:00 AM PDT

Defects in potassium channels contribute to reduced immune surveillance in cancers

Speaker
  • Research Associate, University of Cincinnati, Department of Internal Medicine, Division of Nephrology, Cincinnati OH
    BIOGRAPHY

Abstract
DATE: September 20, 2018
TIME: 09:00am PDT, 12:00pm EDT
 
Harnessing the immune system has emerged as a powerful therapeutic strategy in oncology. However, the limited ability of cytotoxic CD8+ T cells to infiltrate solid tumors presents a major roadblock to develop effective immunotherapy. Cytotoxic CD8+ T cells, in fact, have to infiltrate solid tumors, attack and kill cancer cells in order to provide an effective antitumor response. CD8+ T cell effector functions depend on Ca2+ influx into the T cell, which is controlled by two potassium (K+) channels: the voltage-dependent Kv1.3 and the Ca2+-activated KCa3.1. Our laboratory studies the contribution of these channels to T cell effector functions in patients with head and neck squamous cell carcinoma (HNSCC). We recently reported a decreased Kv1.3 function accompanied by a decrease in Ca2+ influx in tumor infiltrating lymphocytes (TILs) isolated from HNSCC patients. Furthermore, CD8+ TILs expressing high Kv1.3 levels and showing increased cell proliferation and cytotoxicity preferentially accumulated in the stroma. We also reported a role for K+ channels in regulating CD8+ T cell infiltration in tumors. Various intratumoral factors, especially the nucleoside adenosine limit the accumulation of TILs. We analyzed the migration of CD8+ T cells from HNSCC patients using a 3D chemotaxis assay and observed that adenosine inhibited the chemotaxis of CD8+ T cells from HNSCC patients to a greater degree than CD8+ T cells from healthy individuals. This increased sensitivity of HNSCC CD8+ T cells to adenosine correlated with their inability to infiltrate the tumor and was due to a decrease in KCa3.1 activity. Thus, our data indicate that defects in the K+ channels in T cells limit their effector functions and migration into the tumors, thereby contributing to the reduced anti-tumor immune response. Positive modulators of these channels could improve cancer immune surveillance, thus potentially opening new avenues for cancer immunotherapy.
 
Learning Objectives:
  • Understanding the physiological role of Kv1.3 and KCa3.1 channels in T cell function and learn how their defective function in cancer T cells can lead to decreased immune anti-tumor response
  • Learn about the various experimental methodologies and functional assays to assess T cell function.

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
DEC 01, 2021 7:00 AM PST
C.E. CREDITS
DEC 01, 2021 7:00 AM PST
Date: December 01, 2021 Time: 7:00am (PST), 10:00am (EST) In the era of immuno-oncology, there is a growing need for the identification of new biomarkers predictive for sensitivity to anti-P...
SEP 20, 2018 9:00 AM PDT

Defects in potassium channels contribute to reduced immune surveillance in cancers



Show Resources
Loading Comments...
Show Resources