MENU

Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

Speaker
  • Stadtman Investigator, NIH, Unit on Ocular Stem Cell & Translational Research
    Biography
      Dr. Kapil Bharti holds a bachelor's degree in Biophysics from the Panjab University, Chandigarh, India, a master's degree in biotechnology from the M.S. Rao University, Baroda, India, and a diploma in molecular cell biology from Johann Wolfgang Goethe University, Frankfurt, Germany. He obtained his Ph.D. from the same institution, graduating summa cum laude. His Ph.D. work involved research in the areas of heat stress, chaperones, and epigenetics. He did his postdoc at the National Institutes of Health, where he published numerous papers in the areas of transcription regulation, pigment cell biology, and developmental biology of the eye. He has won several awards, including, most recently, being selected as an Earl Stadtman Tenure-Track Investigator at NIH. His lab was recently awarded two prestigious grants: 1) the only Intramural Common Fund grant to develop a phase I Investigational New Drug (IND) for Autologous induced pluripotent stem cell derived retinal pigment epithelium tissue; and 2) a DoD grant to develop a 3D-retina tissue to model retinal diseases in vitro. His current work as the head of the Unit on Ocular and Stem Cell Translational Research involves understanding mechanism of retinal degenerative diseases using induced pluripotent stem cell technology, and developing cell-based and drug-based therapies for such diseases.

    Abstract

    Induced pluripotent stem (iPS) cells are a promising source of personalized therapy. These cells can provide immune-compatible autologous replacement tissue for the treatment of potentially all degenerative diseases. We are preparing a phase I clinical trial using iPS cell derived ocular tissue to treat age-related macular degeneration (AMD), one of the leading blinding diseases in the US. AMD is caused by the progressive degeneration of retinal pigment epithelium (RPE), a monolayer tissue that maintains vision by maintaining photoreceptor function and survival. Combining developmental biology with tissue engineering we have developed clinical-grade iPS cell derived RPE-patch on a biodegradable scaffold. This patch performs key RPE functions like phagocytosis of photoreceptor outer segments, ability to transport water from apical to basal side, and the ability to secrete cytokines in a polarized fashion. We confirmed the safety and efficacy of this replacement patch in animal models as part of a Phase I Investigational New Drug (IND)-application. Approval of this IND application will lead to transplantation of autologous iPS cell derived RPE-patch in patients with the advanced stage of AMD. Success of NEI autologous cell therapy project will help leverage other iPS cell-based trials making personalized cell therapy a common medical practice.                                                             


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    JUL 22, 2020 10:00 AM PDT
    C.E. CREDITS
    JUL 22, 2020 10:00 AM PDT
    DATE: July 23, 2020 TIME: 10:00 am PDT The SARS-CoV-2 pandemic has taken a toll on many sectors of the medical community. As the pandemic took a grip on the laboratory, the need for diagnost...
    Loading Comments...
    Show Resources
    Attendees
    • See more