AUG 20, 2014 8:45 AM PDT

Digitizing Life Using Synthetic Genomics

Speaker

Abstract

In 2010, our team of synthetic biologists announced the creation of a bacterial cell that had a chemically synthesized genome. To build this synthetic Mycoplasma mycoides JCVI 1.0 we had to develop two sets of methods. The path to develop what we believe will be the foundation technologies of the field of Synthetic Genomics took ~150 man year and many twists and turns. We made the 1.1 Mbp M. mycoides genome using a series of new techniques for assembly of DNA molecules in vivo in yeast cells and in vitro. This process we called Genome Assembly. The other new technical repertoire is Genome Transplantation. We isolated our synthetic genome, which was cloned as a yeast artificial chromosome, and installed it into cells of a closely related bacterial species. We are currently eliminating all the genes in this organism not essential for growth in the laboratory. We expect to produce a cell with less than 400 protein-coding genes. This minimal bacterium will likely have about 100 genes of unknown function, and most of those will have homologous genes in most other bacteria. We plan to use this simple organism to investigate the fundamental principles of cellular life. The Synthetic Genomics technology developed from this effort will enable biologists to build both microbes as well as eukaryotic cells capable of solving human needs in medicine, bioenergy and industry. For instance we envision the same Genome Assembly and Genome Transplantation technologies used to build synthetic microbial cells could be used to make human artificial chromosomes and install them in cells for therapeutic and research purposes.


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
DEC 09, 2021 11:00 AM PST
C.E. CREDITS
DEC 09, 2021 11:00 AM PST
Date: December 09, 2021 Time: 11:00am (PDT), 2:00pm (EDT) The burden of antimicrobial resistance (AMR) has been acknowledged worldwide by leading health institutes. Besides the need for new...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
AUG 20, 2014 8:45 AM PDT

Digitizing Life Using Synthetic Genomics



Show Resources
Loading Comments...
Show Resources