MENU
DEC 08, 2015 8:00 AM PST

WEBINAR: Diversity of Cancer-Derived Extracellular Vesicles

Speaker
  • Associate Professor, Cedars-Sinai Medical Center and University California, Los Angeles (UCLA), Assistant Professor, Harvard Medical School
    Biography
      Dr. Dolores Di Vizio is a pathologist and a molecular and cell biologist trained at Albert Einstein College of Medicine, and Harvard Medical School. Dr. Di Vizio is in the faculty at Harvard University since 2007, and holds an academic appointment as associate professor at Cedars-Sinai Medical Center, and UCLA, Los Angeles. Dr. Di Vizio has been studying the molecular mechanisms of progression to advanced disease in human tumors, with particular emphasis on prostate cancer, for over a decade. She discovered that fast migrating and metastatic amoeboid cancer cells release very large extracellular vesicles into the extracellular space. Her group has demonstrated that these vesicles, known as large oncosomes, contain a distinct cargo and play specific function in cancer progression. Ongoing studies in her lab use large-scale approaches, including next generation sequencing, to characterize the molecular profile of large oncosomes and other extracellular vesicles, with the ultimate goal to identify cancer markers in biological fluids. Another focus in the lab is the study of the biological and functional diversity of various populations of extracellular vesicles. Dr. Di Vizio is an executive board member of the International Society of Extracellular Vesicles, and an associate editor for the Journal of Extracellular Vesicles.

    Abstract
    Cancer-derived extracellular vesicles (EVs) play an important role in cancer progression and metastasis. They can be identified in biological fluids thus providing appealing candidates for novel circulating biomarkers. Studies designed to achieve a deeper understanding of the extent to which EVs propagate oncogenic signals and can be interrogated in clinically relevant settings are increasing. EVs are highly heterogeneous in size, function, biogenesis and mechanisms of communication with target cells. A greater molecular and functional characterization of the EV types that can be released from a given cancer cell will improve our knowledge of the mechanisms underlying cancer progression. Focus of this webinar is a novel EV population referred to as large oncosomes, which originate from the shedding of non-apoptotic membrane blebbing. This biological phenomenon is typical of amoeboid tumor cells with keen migratory abilities and high metastatic propensity. Recent studies demonstrate that large oncosomes are molecular and functional entities that can be distinguished from exosomes and possibly from other EV classes. Further studies on the functional role of large oncosomes and other EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth and metastasis.

    Learning Objectives:
    • Understand importance of the role cancer-derived extracellular vesicles (EVs) play in cancer progression and metastasis
    • Understand the role of novel EV population referred to as large oncosomes
    • Understand a novel extracellular vesicle (EV) population referred to as large oncosomes, which originate from the shedding of non-apoptotic membrane blebbing
    • Understand recent studies that demonstrate that large oncosomes are molecular and functional entities that can be distinguished from exosomes and possibly from other EV classes

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    JUN 09, 2020 3:00 PM CEST
    C.E. CREDITS
    JUN 09, 2020 3:00 PM CEST
    DATE: June 9, 2020 TIME: 6am PT, 9am ET, 3pm CEST The importance of disposable plastic consumables and their overall impact on the experimental workflow of qPCR has been taken into considera...
    MAY 13, 2020 4:00 PM CEST
    C.E. CREDITS
    MAY 13, 2020 4:00 PM CEST
    DATE: May 13, 2020 TIME: 7am PT, 10am ET, 4pm CEST Stem cells represent an important tool in a wide range of applications, including basic research, disease modeling, drug discovery, and reg...
    Loading Comments...
    Show Resources
    Attendees
    • See more