AUG 22, 2013 1:00 PM PDT

Embracing the Complexity of Cancer: Seeing the Forest and the Trees

Speaker
  • Director of Computational Sciences and Informatics program for Complex Adaptive Systems and Professor in the School of Life Sciences, Arizona State University
    BIOGRAPHY

Abstract
Personalized medicine is transforming biomedical research and healthcare service delivery. Disease definition, diagnosis, treatment, and prevention are being fundamentally altered by the capacity to routinely perform comprehensive molecular characterization. Nowhere is this change happening faster than in the field of cancer. Increasingly sophisticated technology provides the capacity to describe, in multiple molecular dimensions, the tumor and the individual in which it has developed. These technologies identify the millions of variants present in normal individuals and thousands of alterations that occur during the course of the disease process. This systems-wide molecular analysis of constitutional and somatic tissues has identified a complex cacophony of inherited and acquired variation. Coherence emerges from these data when evaluated using biologic networks as analytic frameworks. These networks account for the individual heterogeneity in underlying etiology as well as the diversity of events necessary to generate a complex phenotype such as cancer. Emerging collections of analytic approaches permit analysis using genome-wide data sets and established biologic networks as models. The generation of this unprecedented amount of data presents us with the challenge contextualizing that data and converting into actionable information. The integration and interpretation of this complex multidimensional information into the evidence necessary to support clinical care exceeds the raw human cognitive capacity. Information systems have the capacity to provide the needed "tool" to tackle this challenge - to generate the necessary evidence to support the delivery of personalized medicine. Arizona State University's (ASU) Complex Adaptive Systems team is building such an Evidence Engine in its Next Generation Cyber Capability (NGCC). The ASU NGCC - composed of networks, hardware, software, and people transforms "Big Data" to information and creates the evidence necessary to enable personalized medicine.

Show Resources
You May Also Like
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
Loading Comments...
Show Resources
Attendees