JUL 22, 2021 12:45 PM EDT

An Engineered AsCas12a nuclease facilitates the rapid generation of therapeutic cell medicines

C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. In collaboration with Integrated DNA Technologies, we showed that this engineered variant we refer to as AsCas12a Ultra, increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We showed that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.

Learning Objectives:

1. Identify the engineered AsCas12a Ultra nuclease is commercially available to researchers from Integrated DNA Technologies

2. Recall this engineered AsCas12a nuclease forms the basis for EDIT-301, an experimental treatment for sickle cell disease which is currently being tested in the clinic

3. Recall this engineered AsCas12a nuclease breaks the observed paradigm where most natural and engineered CRISPR nuclease variants that achieve very high specificity come with a cost to on-target editing activity in most clinically relevant cell types


Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
DEC 07, 2022 9:00 AM PST
C.E. CREDITS
DEC 07, 2022 9:00 AM PST
Date: December 07, 2022 Time: 9:00am (PST), 12:00pm (EST), 6:00pm (CET) Join us for an exciting live panel webinar, as we celebrate the 60th anniversary of Gibco Cell Culture. The panelists...
OCT 13, 2022 9:00 AM +08
OCT 13, 2022 9:00 AM +08
First Broadcast: Date: October 12, 2022 Time: 8:00am PDT, 11:00am EDT Second Broadcast: Date: October 12, 2022 Time: 9:00am SGT The new Embedded CryoSPARC Live, now fully integrated with t...
AUG 10, 2022 10:00 AM PDT
AUG 10, 2022 10:00 AM PDT
Date: August 10, 2022 Time: 10:00am PDT, 1:00pm EDT The global pandemic has increased focus and scrutiny on molecular diagnostic assay development, resulting in a need for assays that provid...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
NOV 09, 2022 8:00 AM PST
C.E. CREDITS
NOV 09, 2022 8:00 AM PST
Date: November 09, 2022 Time: 8:00am (PST), 11:00am (EST), 5:00pm (CET) The field of cell and gene therapy is rapidly growing. In particular, the use of lentiviruses in CAR-T applications is...
Loading Comments...
Show Resources
Attendees