AUG 20, 2014 7:15 AM PDT

Establishing cell-free biology for the production of therapeutics, materials, and chemicals

Speaker

Abstract

Imagine a world in which we could adapt biology to manufacture any therapeutic, material, or chemical from renewable resources, both quickly and on demand. Industrial biotechnology is one of the most attractive approaches for addressing this need, particularly when large-scale chemical synthesis is untenable. Unfortunately, the fraction of biobased products amenable to economical production is limited because engineering whole-cell microorganisms with synthetic pathways remains costly and slow. We hypothesize that a key problem to these efforts lies with the inherent limitations imposed by cells. Microbial cells exist to produce more cells, not to produce items of commerce, which often are an unnecessary or even toxic burden on the primary cellular objectives of growth and adaptation. This leads to a variety of challenges afflicting the current state-of-the-art, including: low yields and productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, we are expanding the scope of the traditional engineering model in biotechnology by using cell-free systems to harness ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells for the production of target products. Rather than attempt to balance the tug-of-war between the cells objectives and the engineers objectives, we are developing new paradigms for designing, building, and testing cell-free systems that harness and modify biological systems involved in protein synthesis and metabolism. In this presentation, I will discuss our efforts to develop cost-effective, high-throughput cell-free protein synthesis platforms, expand the chemistry of life using non canonical amino acids, construct and evolve synthetic ribosomes, and produce sustainable chemicals with ultrahigh productivities. Our work is enabling a deeper understanding of why natures designs work the way they do and opening new frontiers for biomanufacturing.


Show Resources
You May Also Like
FEB 24, 2021 10:00 AM PST
C.E. CREDITS
FEB 24, 2021 10:00 AM PST
DATE: February 24, 2021 TIME: 10am PST Automated lab instruments such as liquid handlers and cell sorters are increasingly common in all types of laboratories, driving fast results for labor...
JAN 21, 2021 8:00 AM PST
JAN 21, 2021 8:00 AM PST
Date: January 21, 2021 Time: 8:00am (PST), 11:00am (EST) Today, critical reagent characterization is a key component in the overall workflow to establish robust ligand binding assays (e.g.,...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
DEC 15, 2020 10:00 AM PST
C.E. CREDITS
DEC 15, 2020 10:00 AM PST
DATE: December 15, 2020 TIME: 10:00am PST Scientists from Thermo Fisher Scientific will walk us through the world of microorganisms. They will discuss their most recent research on viruses,...
AUG 20, 2014 7:15 AM PDT

Establishing cell-free biology for the production of therapeutics, materials, and chemicals


Specialty

Research And Development

Gene Expression

Big Data

Dna

Tumor

Cancer Research

Cancer

Biomarkers

Earth Science

Oncology

University

Gene Sequencing

Mass Cytometry

Drug Discovery

T-Cells

Geography

Asia50%

Europe50%

Registration Source

Website Visitors100%

Job Title

Student50%

Medical Laboratory Technician50%

Organization

Manufacturer - Other50%

Academic Institution50%


Show Resources
Loading Comments...
Show Resources
Attendees
  • See more