OCT 11, 2017 12:00 PM PDT

Examining Cancer with the minION: Methylation and Structural Variation

Speakers
  • Assistant Professor Department of Biomedical Engineering Johns Hopkins University
    Biography
      Winston Timp is an assistant professor in Biomedical Engineering at Johns Hopkins University. He earned bachelor degrees in Biochemistry, Chemistry, Physics and Electrical Engineering from the University of Illinois at Urbana. He then earned his a masters and PhD in Electrical Engineering from MIT, working at the Whitehead Institute in Paul Matsudaira's lab, focusing his thesis work on the study of cellular communication in a 3D microenvironment. After receiving his doctorate, he trained as a postdoc at Johns Hopkins in the labs of Andrew Feinberg and Andre Levchenko, studying the epigenetics of cancer.

      My lab's focus is in the development and application of sequencing technologies to gain a deeper understanding of biology and a more accurate set of clinical tools for human disease. We integrate biophysics, molecular biology and computational biology to create new tools for exploring the epigenome and genome. Leveraging these tools, we then explore interesting questions about fundamental biological concepts using model systems. We apply our newfound knowledge and toolset to clinical samples for diagnosis, surveillance and treatment of human disease. Recent projects range from diagnosis of infectious disease using nanopore sequencing, to developing new tools to characterize the genome and epigenome of cancer, to reading the transcriptome of the hummingbird.

    Abstract:

    Nanopore sequencing has enormous potential for application to cancer, but specifically offers advantages into two main arenas, epigenetics and structural variation. Methylation is well-known to be altered in cancer as compared to normal tissue, but how these changes arise and what patterns they are comprised of is only recently being explored. We have demonstrated the ability to sequencing phased methylation patterns in cancer versus normal samples over >5kb fragments, illustrating the potential of this technique.  Using methylation calling, we can probe the heterogeneous nature of the cancer epigenome, as well as the changes which occur between normal and cancer samples.  

    Structural variants comprise a significant fraction of mutations in cancer, e.g. 50% of pancreatic cancer mutations.  Unfortunately, limitations of conventional, short-read DNA sequencing technologies make it difficult to detect these variations which often lie in repetitive regions. Nanopore sequencing can overcome these limitations, allowing more in-depth study of SVs and phased SNVs. We applied solution-phase hybridization capture to target SV hotspots in pancreatic cancer samples with long-read sequencing.  We also demonstrate that with signal level analysis, we can call SNPs and SVs in the same sample.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    Loading Comments...
    Show Resources