Improved Neuronal Performance with the Gibco B-27 Plus Culture System

Speakers
  • Associate Director and Group Leader, Thermo Fisher Scientific
    Biography
      Dr. Kuninger leads research, development and commercialization of media systems for pluripotent stem cell culture & differentiation, neurobiology, and (non-hepatic) primary cell biology at Thermo Fisher Scientific in the Cell Biology business based in Frederick MD. His teams support numerous portfolios and have launched over 25 new products spanning stem cell culture & cryopreservation, differentiation (endo-, ecto- and meso-dermal lineages) and neurobiology over the past 3 years. David is a seasoned scientist and manager, experienced in media formulation & optimization, assay design and implementation, and troubleshooting. Expertise in GLP/GMP compliance, tech transfer and scale up, as well as verification and validation processes. Prior to starting at Thermo Fisher Scientific (legacy Invitrogen) in 2007 as Staff Scientist, he joined Oregon Health Sciences University as a Postdoctoral Fellow investigating the actions of insulin-like growth factors in the lab of Dr. Peter Rotwein, subsequently joining the faculty in the Department of Biochemistry at OHSU as a Research Instructor. He completed is PhD in Biochemistry and Genetics University of Texas Medical Branch in the laboratory of Dr. John Papaconstatinou and has a B.S. in Chemistry from the University of Oregon.

    Abstract:

    Human iPSC-derived neurons have increasingly become a valuable system for the study of neurological disorders.   Robust cell reprogramming and improved differentiation protocols enable scientists to generate patient-specific, disease in a dish models for disorders such as Parkinson's, Alzheimer's, and Autism, among others.  These human models tend to be flexible, scalable and maintain many of the characteristics of found in these disorders, which are key requirements for their use in mechanistic and drug discovery studies.  Further, the development of gene editing technology has spawned intense interest in the use of gene-edited, patient-specific iPSC-derived neurons in cell therapy applications for the treatment of neuro-degenerative disorders.

    A critical step in generating useful iPSC-derived neurons is neuronal maturation.  During maturation neurons extend neurites to form highly connected networks, express synaptic markers, and become electrically active.  Typical maturation conditions are inefficient,  generating poorly matured neurons with low levels of functionality over extended periods of time.  Recently we developed a new neuronal neuronal maturation and maintenance system, (B-27TM Plus and NeurobasalTM Plus) and showed significantly improved neuronal survival, maturation, and functionality of primary rodent neurons compared to other culture systems.

    Here we expand our studies to PSC-derived neurons, utilizing multiple human lines PSC and different approaches for neural stem cell derivation.  Diverse endpoints were used to interrogate maturation; neurite outgrowth, neuronal maturation marker expression (through quantitative imaging), and functionality through Multi-Electrode Array (MEA) analysis.  We found that human PSC-derived neurons matured in the new “Plus” system showed both accelerated neurite outgrowth and improved activity as compared to other approaches.   Additionally our studies highlight the importance of optimizing several key parameters, including extracellular matrix coating concentrations and delivery conditions for improved reproducibility and quality of stem cell derived neural cultures.


    Show Resources
    You May Also Like
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    Loading Comments...