MENU

Improving the Precision and Targeting of Transcranial Magnetic Stimulation

Presented at: Neuroscience 2020
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Post-doctoral associate, Duke University
    Biography
      Luis J. Gomez is a Post-doctoral associate at the Department of Psychiatry & Behavioral Sciences in Duke University Medical School at Durham, NC, USA, where he is developing optimization and computational techniques for use in improving non-invasive brain stimulation procedures. Previously, he was at the Radiation Laboratory, University of Michigan, Ann Arbor, MI, USA, where he developed fast-integral equation methods for analyzing scattering by highly-heterogeneous media and inverse scattering methods. Dr. Gomez was a recipient of the National Science Foundation Graduate Fellowship in 2008, and a National Institutes of Health BRAIN initiative K99/R00 advanced post-doctoral career transition award in 2019.

    Abstract

    I describe a framework for improving the targeting and precision of transcranial magnetic stimulation (TMS), a noninvasive brain stimulation technique used for research and clinical applications. The framework designs coils that double the precision of spatial targeting (focality) of existing TMS coils. This is the first significant advancement in the depth-focality trade-off of TMS coils since the introduction of the standard figure-of-eight coil three decades ago, and likely represents the fundamental physical limit. Moreover, the framework quantifies uncertainty in TMS induced electric fields due to system setup and patient variability, and it identifies key parameters that affect targeting precision. Results show that coil position is a key contributor to TMS variability, supporting the need for more precise neuro-navigation devices.  Finally, I show how this framework can also be used for determining coil placements that optimally target specific brain regions. By improving the accuracy and precision of TMS targeting this frameworks enables the development of more effective clinical and research TMS protocols.

    Learning Objectives:

    1. Learn about the physics behind transcranial magnetic stimulation, and the spatial characteristics of the TMS coil stimulating fields.
    2. Learn about the specific TMS session parameters that contribute most to variation in the TMS induced stimulating field. Furthermore, they should learn about different approaches to coil placement and their precision in terms of targeting.


    Show Resources
    You May Also Like
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    DEC 03, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 03, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: December 3, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Scientific cameras used in applications such as light sheet microscopy and calcium/voltage imaging put a large emphasis on high speed...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    Loading Comments...
    Show Resources