MENU
MAR 10, 2022 9:00 AM PST

Keynote Presentation: Modulation of the CSPG Receptor PTPσ to Enhance Neurorepair

Presented at: Neuroscience 2022
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

There are currently no approved therapeutics to promote neural repair following central nervous system (CNS) damage. Groundbreaking studies in neurotrauma and disease found that a family of extracellular matrix (ECM) molecules known as chondroitin sulfate proteoglycans (CSPGs) are increased at sites of CNS damage and inhibit endogenous repair mechanisms. The inhibitory effects of CSPGs are mediated through protein tyrosine phosphatase sigma (PTPσ), a potent CSPG receptor. NervGen has developed a novel, first-in-class PTPσ modulator, known as NVG-291, for treatment of nervous system damage due to trauma or disease. NVG-291 is a systemically administered, blood-brain barrier penetrating peptide currently undergoing a Phase 1 trial in healthy volunteers to investigate safety, tolerability and pharmacokinetics.

NVG-291 modulates the cellular response and impact of CSPGs on neural repair, regeneration, remyelination, plasticity and other processes within the central and peripheral nervous systems. Following nervous system damage, CSPGs are upregulated within the forming scar around areas of damage, where they inhibit regeneration of injured axons. In non-damaged CNS tissue, CSPGs are a key component of the perineuronal net (PNN), an ECM structure surrounding synapses, where they help maintain synaptic connections by restricting axonal sprouting and plasticity. However, the presence of PNNs in an injured environment inhibits synaptic and axonal plasticity, which could otherwise facilitate recovery through the generation of novel circuits to compensate for injured or dysfunctional pathways. NVG-291 modulation of the CSPG receptor, PTPσ, promotes injured axons to regenerate through areas of damage, and non-injured axons away from damage to sprout and form novel circuits to compensate for the loss of, and promote the return of, function. NVG-291 has been shown to promote clinically relevant improvements in a variety of preclinical models including spinal cord injury, peripheral nerve injury, stroke, and multiple sclerosis. Our goal is to explore NVG-291’s potential as a therapeutic intervention to facilitate recovery from neurodegenerative diseases.

Learning Objectives:

1. Describe how PTPσ and CSPGs inhibit functional recovery following nervous system damage.

2. Discuss potential applications of NVG-291 to promote regeneration, plasticity, and remyelination following nerve damage.

3. Analyze the rationale for NVG-291 and/or PTPσ modulation as a therapeutic intervention in degenerative diseases


Show Resources
You May Also Like
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
APR 28, 2022 8:00 AM PDT
APR 28, 2022 8:00 AM PDT
Date: April 28, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Human pluripotent stem cells (PSCs) and their derivatives hold great potentials in...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
Loading Comments...
Show Resources