MAY 10, 2017 9:00 AM PDT

Keynote Presentation: Using Networks to Understand the Genotype-Phenotype Connection

C.E. Credits: CEU
Speaker
  • Professor of Computational Biology and Bioinformatics, Chair of the Department of Biostatistics, Harvard University, Dana-Farber Cancer Institute
    BIOGRAPHY

Abstract

Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits


Show Resources
You May Also Like
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
SEP 29, 2022 8:00 AM PDT
SEP 29, 2022 8:00 AM PDT
Date: September 29, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Adeno-associated virus (AAV) is one of the most widely used delivery vehicles in gene therapy. To ensure the safety...
MAY 10, 2017 9:00 AM PDT

Keynote Presentation: Using Networks to Understand the Genotype-Phenotype Connection

C.E. Credits: CEU


Show Resources
Loading Comments...
Show Resources
Attendees