MAY 12, 2016 12:00 PM PDT

Learning Biology from Networks and their Structure

C.E. CREDITS: P.A.C.E. CE
Speakers
  • Postdoctoral Research Fellow, Dana Farber Cancer Institute/Harvard University
    Biography
      John Platig received his PhD in Physics from the University of Maryland. His thesis focused on the applications of complex network methods to biological data sets, with an emphasis on understanding how errors in edge identification affect network properties. In conjunction with his physics training, he was a Cancer Research Training Fellow at the National Cancer Institute, working to identify potential therapeutic targets from a reconstructed gene regulatory network in Diffuse Large B Cell Lymphoma. In 2013 John started as postdoctoral fellow with John Quackenbush at the Dana-Farber Cancer Institute. He is currently working on network inference and clustering methods to better understand genetic and other factors that drive phenotypes.

    Abstract:

    Network models are an invaluable tool for integrating multiple data types and for modeling interactions between biological elements. One common question that arises, however, is what to do with such a network beyond making a pretty picture. In this talk, I will describe two applications in which we have used network structure to explain features of biological systems. In the first, we construct bipartite eQTL networks from genotype and gene expression data collected by the GTEx consortium. In the second, we explore the response of gene regulatory networks in Mycobacterium tuberculosis to a targeted drug treatment. In both cases, we find that the network structural properties reflect constraints operating on each biological system, and that each network has its own unique, informative feature set. For example, in the eQTL networks, we find the global hubs are not very informative but degree is very useful in interpreting the tuberculosis regulatory network. I will also discuss statistical testing and validation of these networks using functional annotation and wet lab experiments.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    FEB 19, 2020 11:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 19, 2020 11:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 19, 2020TIME: 11:00am PST, 2:00pm EST...
    JUL 31, 2019 09:00 AM PDT
    C.E. CREDITS
    JUL 31, 2019 09:00 AM PDT
    DATE: July 31, 2019TIME: 9:00am PT, 12:00pm ET The choroid plexus, which makes up the blood-cerebrospinal fluid barrier in the central nervous system (CNS), lines the ventricle...
    Loading Comments...
    Show Resources