MENU

Long-range technologies resolve complex genomic regions overlooked by short-read sequencing

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Mayo Clinic
    Biography
      Dr. Ebbert is an Assistant Professor of Neuroscience at the Mayo Clinic with a background in computational biology and bioinformatics, focusing on Alzheimer's disease, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD). He is employing long-range technologies to identify functional structural DNA variants and individual RNA isoforms driving disease. Dr. Ebbert also has experience in genomics studies and analyses, algorithm design, and statistics. He has published in respected journals across cancer, bioinformatics, ALS, and Alzheimer's disease.

    Abstract

    Complex genomes, including the human genome, contain ‘dark’ regions that standard short-read sequencing technologies do not adequately resolve—overlooking many variants that may be relevant to disease. We systematically characterized these regions in genomes with high short-read coverage, identifying more than 6000 gene bodies that are at least partially dark, and more than 100 protein-coding genes are 100% ‘camouflaged’. Many known disease-relevant genes are also camouflaged, including CR1, a top Alzheimer’s disease gene. Other disease-relevant genes include NEB, SMN1 and SMN2, and ARX. Long-read technologies resolve major portions of these regions. We specifically compared 10x Genomics, PacBio’s Sequel, and Oxford Nanopore Technologies’ PromethION, demonstrating potential long-term benefits of using long-read technologies. We are also utilizing optical DNA mapping from the Bionano Genomics’ Saphyr System to construct full individual haplotypes across challenging genomic regions that are strongly implicated in disease, including the C9orf72 ‘GGGGCC’ repeat expansion, CR1, and major histocompatibility locus, which harbors the human leukocyte antigen (HLA) genes.

    Learning Objectives:

    1. Identify types of genetic variants that are overlooked with standard short-read sequencing approaches, including ‘dark’ and ‘camouflaged’ genes

    2. Identify specific genes that are ‘dark’ or ‘camouflaged’, including 76 disease-associated genes

    3. Demonstrate how long-range technologies resolve these regions


    Show Resources
    You May Also Like
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    Loading Comments...
    Show Resources