MAR 14, 2018 6:00 AM PDT

Mapping Cerebellum-to-Forebrain Connectivity Using Optogenetics and Functional Magnetic Resonance Imaging

Presented at: Neuroscience 2018
Speaker
  • Investigator, LA BioMed & Assistant Professor of Neurology, UCLA
    Biography
      Dr. Paul J. Mathews received his bachelors degree from the University of Oregon where he studied invertebrate behavioral plasticity in the lab of Dr. Nathan Tublitz. He received his Ph.D. in neuroscience from the University of Texas at Austin under the mentorship of Dr. Nace Golding. Dr. Mathews work focused on understanding how the biophysical properties of specific voltage-gated ion channels in an auditory brainstem nuclei contribute to their capacity to make sub-millisecond computations necessary for low frequency sound localization. For the past several years Dr. Mathews has been working at UCLA under the mentorship of Dr. Tom Otis where he is currently working to uncover the cerebellar circuit mechanisms that underlie motor learning and memory. To do this Dr. Mathews is utilizing a multifaceted approach that includes both in vitro and in vivo electrophysiology, optogenetics, advanced optics, histology, and behavioral manipulations to make links between cerebellar circuit activity and motor output in rodent models. He is currently on the job market looking for a tenured track assistant professor position.

    Abstract

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. I will discuss a combined optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. In this talk I will demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAR 11, 2020 6:00 AM PDT
    C.E. CREDITS
    MAR 11, 2020 6:00 AM PDT
    The locomotion of humans and other animals requires a seamless flow of information from sensory modalities all the way to the motor periphery. As such, locomotion is an excellent system for...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 24, 2020 10:00 AM PDT
    C.E. CREDITS
    MAR 24, 2020 10:00 AM PDT
    DATE: March 24, 2020 TIME: 10:00 am PDT, 1:00pm EDT The Clampfit software module is a useful tool to manipulate and analyze electrophysiological data acquired by pCLAMP™ software. Rece...
    MAY 07, 2020 8:00 AM PDT
    C.E. CREDITS
    MAY 07, 2020 8:00 AM PDT
    DATE: May 7, 2020 TIME: 8:00AM PDT, 11:00AM EDT With the recent explosion of cell therapy, we know more about conditions affecting cell growth than ever before. Your CO2 incubator should not...
    Loading Comments...
    Show Resources
    Attendees
    • See more