OCT 29, 2014 12:00 PM PDT

Obesity, weight loss, and the microenvironment in basal-like breast cancer

Speaker

Abstract

Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). Using C3(1)-TAg mice, a genetically engineered mouse model that resembles human BBC, we demonstrated that mice displayed increased tumor aggressiveness when fed obesogenic diets. Obesity induced in the adult window of susceptibility triggered early latency and elevated mammary gland expression and activation of hepatocyte growth factor (HGF)/c-Met compared to lean controls, a pro-tumorigenic pathway associated with BBC in patients. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation compared to lean controls. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. Using a more severe diet model, we exposed mice to a lifelong diet intervention - C3(1)-TAg mice were weaned onto and maintained on an obesogenic high fat diet. Obese mice displayed significant elevations in tumor progression. Epidemiologic studies estimate that weight loss could prevent a large proportion of BBC. We sought to investigate whether weight loss in adulthood prior to tumor onset would protect mice from the accelerated tumorigenesis observed in obese mice. Indeed, tumor progression was significantly reversed when obese mice were induced to lose weight by switching to a control low fat diet prior to tumor onset compared to mice maintained on obesogenic diet. Obesity-elevated HGF/c-Met expression in normal mammary glands and c-Met in tumors was significantly reversed with weight loss. Other mediators associated with oncogenesis such as hyperinsulinemia and a high leptin/adiponectin ratio were also elevated by obesity and reduced with weight loss. In sum, weight loss significantly blunted the obesity-responsive pro-tumorigenic HGF/c-Met pathway and improved several metabolic risk factors associated with BBC, which together may have contributed to the dramatic reversal of obesity-driven tumor progression. Future research aims to evaluate the role of obesity, the mammary microenvironment, and the HGF/c-Met pathway in basal-like cancer progression.

Learning Objective:

  • After completing this activity the learner will be able to understand how obesity and weight loss affect the normal mammary gland and tumor in a murine model of basal like breast cancer.
  • Links to human studies and ongoing outreach programs will be discussed.

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUN 24, 2021 10:00 AM PDT
C.E. CREDITS
JUN 24, 2021 10:00 AM PDT
Date: June 24, 2021 Time: 10:00am PDT The Chan Zuckerberg Initiative (CZI) was founded to help solve some of society’s toughest challenges— from eradicating disease and improving...
MAY 18, 2021 7:00 AM PDT
MAY 18, 2021 7:00 AM PDT
Date: May 18, 2021 Time: 7:00am PDT, 10:00am EDT Proteins encoded by mutant genes in cancers can be processed and presented on tumor cell surface by human leukocyte antigen (HLA) molecules,...
OCT 29, 2014 12:00 PM PDT

Obesity, weight loss, and the microenvironment in basal-like breast cancer


Specialty

Cancer

Biotechnology

Cell

Molecular Biology

Hepatology

Cell Culture

Cancer Research

Research

Molecular Diagnostics

Immunology

Dna

Cancer Therapeutics

Breast Cancer

Infectious Disease

Gene Expression

Geography

Asia100%

Registration Source

Website Visitors100%

Job Title

Student50%

Research Scientist50%

Organization

Academic Institution100%


Show Resources
Loading Comments...
Show Resources