OCT 29, 2014 12:00 PM PDT

Obesity, weight loss, and the microenvironment in basal-like breast cancer

Speakers
  • Assistant Professor, Nutrition, UNC Gillings School of Global Public Health
    Biography
      Liza Makowski is an assistant professor of Nutrition, Division of Nutrition Biochemistry in the Departments of Nutrition and Medicine at the UNC Gillings School of Global Public Health and the UNC School of Medicine. She earned a Ph.D. in the Department of Nutrition at the Harvard School of Public Health and a Masters in Medicine concurrent with her Ph.D. studies as a Lucille P. Markey Fellow from Harvard Medical School. Liza completed postdoctoral studies in the Departments of Medicine and Pharmacology & Cancer Biology at the Duke University Stedman Center for Nutrition and Metabolism. Dr. Makowski has expertise in metabolism, inflammation, mouse models, macrophage biology, and nutrient sensitive signaling pathways. The research focus of the Makowski Lab (http://makowskilab.web.unc.edu/) is to understand metabolic reprogramming of immune cells wherein the goal is to identify novel pathways to manipulate substrate metabolism in immune cells in efforts to limit the pathogenesis of complex diseases such as obesity and diabetes. Dr. Makowski has received multiple grants including a Pathway to Independence NIH K99/R00 award to investigate macrophage mitochondrias role in metabolism and inflammation. She is currently PI on an NIH R21 Provocative Question Grant and a Mary Kay Foundation grant to study obesity and breast cancer risk, and an American Heart Association grant to study substrate metabolism in macrophage biology. Her ultimate aim is to find relevant metabolically sensitive pathways in her model systems, observe parallels in human populations, and identify targets to reprogram immune cells that will restore tissue homeostasis thereby reducing progression of obesity, diabetes, atherosclerosis, and cancer.

    Abstract:

    Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). Using C3(1)-TAg mice, a genetically engineered mouse model that resembles human BBC, we demonstrated that mice displayed increased tumor aggressiveness when fed obesogenic diets. Obesity induced in the adult window of susceptibility triggered early latency and elevated mammary gland expression and activation of hepatocyte growth factor (HGF)/c-Met compared to lean controls, a pro-tumorigenic pathway associated with BBC in patients. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation compared to lean controls. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. Using a more severe diet model, we exposed mice to a lifelong diet intervention - C3(1)-TAg mice were weaned onto and maintained on an obesogenic high fat diet. Obese mice displayed significant elevations in tumor progression. Epidemiologic studies estimate that weight loss could prevent a large proportion of BBC. We sought to investigate whether weight loss in adulthood prior to tumor onset would protect mice from the accelerated tumorigenesis observed in obese mice. Indeed, tumor progression was significantly reversed when obese mice were induced to lose weight by switching to a control low fat diet prior to tumor onset compared to mice maintained on obesogenic diet. Obesity-elevated HGF/c-Met expression in normal mammary glands and c-Met in tumors was significantly reversed with weight loss. Other mediators associated with oncogenesis such as hyperinsulinemia and a high leptin/adiponectin ratio were also elevated by obesity and reduced with weight loss. In sum, weight loss significantly blunted the obesity-responsive pro-tumorigenic HGF/c-Met pathway and improved several metabolic risk factors associated with BBC, which together may have contributed to the dramatic reversal of obesity-driven tumor progression. Future research aims to evaluate the role of obesity, the mammary microenvironment, and the HGF/c-Met pathway in basal-like cancer progression.

    Learning Objective:

    • After completing this activity the learner will be able to understand how obesity and weight loss affect the normal mammary gland and tumor in a murine model of basal like breast cancer.
    • Links to human studies and ongoing outreach programs will be discussed.

    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    Loading Comments...