OCT 29, 2014 1:30 PM PDT

Protein phosphatase 2A in cell survival upon metabolic stress

Speaker
  • Assistant Professor, Cancer Biology , City of Hope National Medical Center
    Biography
      Mei Kong, Ph.D.  is an assistant professor in the Department of Cancer Biology at Beckman Research Institute of City of Hope Cancer Center. She  received her Ph.D. at McGill Univeristy in Canada in Cell Biology.  She then studied cell signaling and cancer metabolism at University of Pennsylvania as an American Association for Cancer Research postdoctoral fellow and then later as a Leukemia Lymphoma Society special fellow.  Dr. Kong is a recepient of the Innovative Research Grant from Stand up to Cancer. She is also a Pew Scholar, Sidney Kimmel Scholar, and V Scholar in Cancer Research.  Dr. Kong studies the oncogenic signal transduction pathways, focusing on the metabolic stress response in tumor cells.

    Abstract

    Tumor cells often display fundamental changes in metabolism and increase their uptake of nutrients to meet the increased bioenergetic demands of proliferation. Glucose and glutamine are two main nutrients whose uptake is directly controlled by oncogenic mutations and are essential for tumor cell survival and proliferation. During tumor growth, increased uptake of nutrients and rapid accumulation of cells can outstrip the supply of essential nutrients, including glucose and glutamine. How tumor cells survive these temporary periods of nutrient deprivation is unclear, but is necessary for tumorigenesis to persist. The major goal of our laboratory is to delineate the strategies used by tumor cells to survive periods of nutrient deprivation and then to develop novel therapies targeting nutrient-sensing pathways of neoplastic cells. We recently discovered that protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. Our studies provided not only deeper understanding of the survival pathway used by cancer cells when glutamine metabolism is blocked, but also provides important evidence that protein phosphatase complexes are actively involved in signal transduction.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    DEC 03, 2020 4:30 PM PST
    C.E. CREDITS
    DEC 03, 2020 4:30 PM PST
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    Loading Comments...
    Show Resources