MAY 11, 2016 10:30 AM PDT

Radiomics: The Potential of Image-Based Phenotyping for Precision Medicine

Speaker
  • Director, Artificial Intelligence in Medicine (AIM) Program, Associate Professor, Harvard University
    BIOGRAPHY

Abstract

Imaging-based techniques have traditionally been restricted to the diagnosis and staging of cancer. But technological advances are moving imaging modalities into the heart of patient care. Imaging can address a critical barrier in precision medicine as solid tumors can be spatial and temporal heterogeneous, and the standard approach to tumor sampling, often invasive needle biopsy, is unable to fully capture the spatial state of the tumor. Image-based phenotyping, which represents quantification of tumor phenotype on medical imaging, is a promising development for precision medicine. Medical imaging can provide a comprehensive macroscopic picture of tumor phenotype and its environment, ideally suited to quantifying the development of tumor phenotype before, during, and after treatment. As a noninvasive technology, medical imaging can be performed at low risk and inconvenience to the patient. Radiomics can quantify this phenotype using advanced data characterization algorithms that can be used to develop biomarkers which complement those derived from biopsies. The ultimate goal of radiomics is to improve precision medicine strategies by allowing clinicians to monitor disease in real time as patients move through treatment. In this talk, Dr. Aerts will discuss recent developments from his group and collaborators performing research at the intersection of radiology and bioinformatics. Also, he will discuss recent work of building a computational image analysis system to extract a rich radiomics set and use these features to build prognostic radiomics signatures. The presentation will conclude with a discussion of future work on building integrative systems incorporating both molecular and phenotypic data to improve cancer therapies.

Learning objectives:

  • Learn about the motivation and methodology for Computational Imaging & Radiomics.
  • Learn about the existing and future potential role of radiomics with other –omics data and within precision medicine.

Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
C.E. CREDITS
Date: October 25, 2022 Time: 9:00am (PST), 12:00pm (EST), 6:00pm (CEST) Candida auris is a multi-drug resistant yeast that continues to be a global threat for infection and transmission in h...
SEP 29, 2022 8:00 AM PDT
SEP 29, 2022 8:00 AM PDT
Date: September 29, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Adeno-associated virus (AAV) is one of the most widely used delivery vehicles in gene therapy. To ensure the safety...
MAY 11, 2016 10:30 AM PDT

Radiomics: The Potential of Image-Based Phenotyping for Precision Medicine



Show Resources
Loading Comments...
Show Resources
Attendees