MAY 11, 2016 10:30 AM PDT

Radiomics: The Potential of Image-Based Phenotyping for Precision Medicine

Speaker
  • Director/PI, Computational Imaging and Bioinformatics Laboratory (CIBL), Assistant Professor of Radiation Oncology, Harvard Medical School, Brigham and Women's Hospital, Dana Farber Cancer In
    BIOGRAPHY

Abstract

Imaging-based techniques have traditionally been restricted to the diagnosis and staging of cancer. But technological advances are moving imaging modalities into the heart of patient care. Imaging can address a critical barrier in precision medicine as solid tumors can be spatial and temporal heterogeneous, and the standard approach to tumor sampling, often invasive needle biopsy, is unable to fully capture the spatial state of the tumor. Image-based phenotyping, which represents quantification of tumor phenotype on medical imaging, is a promising development for precision medicine. Medical imaging can provide a comprehensive macroscopic picture of tumor phenotype and its environment, ideally suited to quantifying the development of tumor phenotype before, during, and after treatment. As a noninvasive technology, medical imaging can be performed at low risk and inconvenience to the patient. Radiomics can quantify this phenotype using advanced data characterization algorithms that can be used to develop biomarkers which complement those derived from biopsies. The ultimate goal of radiomics is to improve precision medicine strategies by allowing clinicians to monitor disease in real time as patients move through treatment. In this talk, Dr. Aerts will discuss recent developments from his group and collaborators performing research at the intersection of radiology and bioinformatics. Also, he will discuss recent work of building a computational image analysis system to extract a rich radiomics set and use these features to build prognostic radiomics signatures. The presentation will conclude with a discussion of future work on building integrative systems incorporating both molecular and phenotypic data to improve cancer therapies.

Learning objectives:

  • Learn about the motivation and methodology for Computational Imaging & Radiomics.
  • Learn about the existing and future potential role of radiomics with other –omics data and within precision medicine.

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
DEC 01, 2021 7:00 AM PST
C.E. CREDITS
DEC 01, 2021 7:00 AM PST
Date: December 01, 2021 Time: 7:00am (PST), 10:00am (EST) In the era of immuno-oncology, there is a growing need for the identification of new biomarkers predictive for sensitivity to anti-P...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
JAN 13, 2022 9:00 AM PST
C.E. CREDITS
JAN 13, 2022 9:00 AM PST
Date: January 13, 2022 Time: 09:00am (PST), 12:00pm (EST) Recently, the Infectious Disease Society of America released guidance on how to approach treatment of infections caused by multidrug...
MAY 11, 2016 10:30 AM PDT

Radiomics: The Potential of Image-Based Phenotyping for Precision Medicine



Show Resources
Loading Comments...
Show Resources