MAY 19, 2020 11:45 AM EDT | APAC MAY 20, 2020 2:45 PM CST

Single-nucleus and Spatial Transcriptomics of Archival Pancreatic Ductal Adenocarcinoma after Neoadjuvant Treatment

Speaker
  • Clinical Fellow in Radiation Oncology, Massachusetts General Hospital, Radiation Oncology
    Biography
      William L. Hwang is currently a Holman Research Fellow at the Broad Institute and Koch Institute for Integrative Cancer Research, as well as a Resident Physician in the Harvard Radiation Oncology Program at Massachusetts General Hospital, Dana-Farber Cancer Institute, Brigham & Women's Hospital, and Boston Children's Hospital. Previously, William was an Angier B. Duke Scholar at Duke University where he completed his undergraduate studies in Biomedical Engineering, Electrical and Computer Engineering, and Physics and was named to the 2006 All-USA College Academic First Team by USA Today. He then completed a Masters in Chemistry at the University of Oxford in 2008 on a Rhodes Scholarship. Upon returning stateside, he enrolled in the Harvard-MIT MD/PhD program on a NIH Medical Scientist Training Grant and Soros Fellowship, earning his PhD in Biophysics and graduating summa cum laude from Harvard Medical School.

      William's research focuses on developing and applying single-cell and spatial omics technologies to patient specimens, three-dimensional organotypic models, and genetically-engineered mouse models to elucidate the tumor-stromal crosstalk in gastrointestinal malignancies, with a particular focus on the neural and immune components of pancreatic cancer. In July 2020, William will be joining the faculty at Harvard Medical School/Massachusetts General Hospital as an Instructor in Radiation Oncology.

    Abstract

    Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory disease and existing molecular subtypes do not inform clinical decisions. Previously-identified bulk transcriptomic subtypes of PDAC were derived exclusively in the treatment-naïve context and several are unintentionally driven by “contaminating” stroma. RNA extraction from pancreatic tissue is difficult and prior single-cell RNA-seq efforts have been limited by suboptimal dissociation/RNA quality and poor performance with the trend towards increased use of neoadjuvant chemoradiotherapy (CRT). To address these limitations, we developed a robust single-nucleus RNA-seq (sNuc-seq) technique compatible with frozen archival PDAC specimens (both naïve and treated) and computational techniques to identify the transcriptomic programs driving intratumoral heterogeneity and therapeutic resistance.

    Single nuclei suspensions were extracted from flash frozen primary PDAC specimens and processed with the 10x Genomics Single Cell 3’ v3 pipeline and gene expression libraries were sequenced (Illumina HiSeq 2500). Combined treatment-naïve (n=13) and CRT-treated (n=12) specimens yielded approximately 150,000 high-quality nuclei. In each tumor, distinct clusters with gene expression profiles consistent with acinar, ductal, fibroblast, endothelial, endocrine, lymphocyte, and myeloid populations were identified. Malignant cells were confirmed by inferred copy number variation analysis (InferCNV v3.9) and segregated into several distinct programs by non-negative matrix factorization (NMF) for each individual patient highlighting intratumoral heterogeneity. Previously identified basal-like and classical-like programs were identified in a subset of treatment-naïve cells but not CRT-treated cells. In the treatment-naïve cohort, we identified additional NMF programs that were distinct from the basal-like and classical-like signatures (neuronal, epithelial-mesenchymal transition, anabolic, catabolic, cycling). In CRT-treated specimens, there was enrichment of catabolic and epithelial-mesenchymal transition programs and several unique programs were also uncovered (invasive stem-like, neuronal stem-like, and stress signaling). Deconvolution of clinically-annotated bulk RNA-seq cohorts using our sNuc-seq signatures and characterization of intercellular interactions with receptor-ligand analysis, spatial transcriptomics (Nanostring GeoMx™ Digital Spatial Profiler), and multiplexed immunofluorescence are ongoing.

    GeoMx DSP is for Research Use Only and not for use in diagnostic procedures.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources
    Attendees
    • See more