AUG 22, 2013 02:00 PM PDT

The Road to Genomic Medicine is Paved with Data and Information

Speakers
  • Professor of Computational Biology and Bioinformatics, Department of Biostatistics, Harvard University, Dana-Farber Cancer Institute
    Biography
      John Quackenbush received his PhD in theoretical physics from UCLA in 1990. Following a physics postdoc, he received a Special Emphasis Research Career Award from the National Center for Human Genome Research to work on the Human Genome Project, spending two years at the Salk Institute and two years at Stanford University working in genomics and computational biology. In 1997 he moved to The Institute for Genomic Research (TIGR), pioneering expression analysis. He joined the Dana-Farber Cancer Institute and the Harvard School of Public Health in 2005, and works reconstruction of gene networks that drive the development of diseases. In 2012 he and Mick Correll co-Founded GenoSpace, a company that develops software tools to enable precision medicine applications.
      <br />

    Abstract:
    Since the introduction of second-generation DNS sequencing technologies in 2007, the cost of genome sequencing has been consistently by 33% per quarter, with the $1000 genome arriving in 2012 and the $100 genome not far off. As DNA sequencing increasingly becomes a commodity, biomedical research is rapidly evolving from a purely laboratory science to an information science in which the winners in the race to cure disease are likely to be those best able to collect, manage, analyze, and interpret data. Here I will provide an overview of the approach we have been developing to deal with the challenge of personal genomic data, including integrative approaches to data analysis and the creation of data portals focused on addressing the most common use cases presented by different user constituencies. By effectively collecting genomic and clinical data and linking information available in the public domain, we have made significant advances in uncovering the cellular networks and pathways that underlie human disease and building predictive models of those networks that may help to direct therapies.

    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    AUG 16, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 16, 2018 08:00 AM PDT
    DATE: August, 16, 2018TIME: 08:00AM PDTThis webinar will review recent advancements in the application of next-generation sequencing of T cell receptor beta (TCRB) chain repertoires towards...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    Loading Comments...