AUG 22, 2013 2:00 PM PDT

The Road to Genomic Medicine is Paved with Data and Information

Speaker
  • Professor of Computational Biology and Bioinformatics, Chair of the Department of Biostatistics, Harvard University, Dana-Farber Cancer Institute
    Biography
      John Quackenbush is Professor of Computational Biology and Bioinformatics and Chair of the Department of Biostatistics at the Harvard TH Chan School of Public Health and Professor of Biostatistics and Computational Biology at the Dana-Farber Cancer Institute. John's PhD was in Theoretical Physics, in 1992 he received a fellowship from the National Institutes of Health to work on the Human Genome Project, which led him from the Salk Institute to Stanford University to The Institute for Genomic Research (TIGR) before moving to Harvard in 2005. He currently directs the Computational Biology and Quantitative Genetics MS program and is PI of the BD2K Training Grant at HSPH. John's research uses massive data from DNA sequencing and other assays to model functional networks in human cells. By comparing networks between groups of individuals, he has found new drug targets, explored chemotherapy resistance, and investigated differences between the sexes. He has received numerous awards for his work, including recognition in 2013 as a White House Open Science Champion of Change. He is also the co-founder of Genospace, a precision medicine software company that was purchased by the Hospital Corporation of America in 2017.

    Abstract
    Since the introduction of second-generation DNS sequencing technologies in 2007, the cost of genome sequencing has been consistently by 33% per quarter, with the $1000 genome arriving in 2012 and the $100 genome not far off. As DNA sequencing increasingly becomes a commodity, biomedical research is rapidly evolving from a purely laboratory science to an information science in which the winners in the race to cure disease are likely to be those best able to collect, manage, analyze, and interpret data. Here I will provide an overview of the approach we have been developing to deal with the challenge of personal genomic data, including integrative approaches to data analysis and the creation of data portals focused on addressing the most common use cases presented by different user constituencies. By effectively collecting genomic and clinical data and linking information available in the public domain, we have made significant advances in uncovering the cellular networks and pathways that underlie human disease and building predictive models of those networks that may help to direct therapies.

    Show Resources
    You May Also Like
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    Loading Comments...
    Show Resources
    Attendees
    • See more