MAY 12, 2016 6:00 AM PDT

The sequencing of 10,000 Human Genomes

Speaker
  • Head of Genomics, Human Longevity, Inc., Research Scientist, J Craig Venter Institute
    Biography
      Amalio Telenti is head of genomics at Human Longevity. He directs a team working on genetics (annotation of genome reports, pharmacogenetics) and genomics (reference genomes, analysis of non-coding genome regions, and data integration). Recently, he led the analysis of the first 10,000 genomes sequenced at HLI.

      A. Telenti trained in internal medicine and infectious diseases at the Mayo Clinic (Rochester, MN), and in microbiology and genetics at the University of Berne, Switzerland, at the Albert Einstein College of Medicine (Bronx, NY), and at the Ragon Institute of MGH, MIT and Harvard (Boston, MA). Between 2007 and 2014 he was professor and director of the Institute of Microbiology at the University of Lausanne, Switzerland. He has published extensively and received many national and international awards, including the prestigious Cloëtta Award, one of the highest distinctions in medicine in Switzerland. In 2012, he was elected member of the Swiss Academy of Medical Sciences. He maintains academic affiliations with the J. Craig Venter Institute and with the Department of Medicine, University of California San Diego.

    Abstract

    Technological advances allow for the large scale sequencing of the whole human genome. Most studies have generated population-based information on human diversity using low to intermediate coverage of the genome (4x to 20x sequencing depth). The recent release of the Illumina HiseqX-Ten allows the sequencing of up to 160 genomes at 30x mean depth in 3 day cycles, at an average cost of $1,000 to $2,000 per genome. We evaluated the capabilities of this new technology by sequencing 10,545 human genomes at high depth. This allowed for the development of a reliable representation of human single nucleotide variation, the reporting of clinically relevant single nucleotide variants and the identification of additional non-reference and of putative human-like sequences.

    Learning objectives
    1.    Evaluating the impact of deep sequencing for the reporting on single genomes
    2.    Understanding the pace of discovery afforded by large scale sequencing of human genomes


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    C.E. CREDITS
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    JUN 17, 2020 1:30 PM PDT
    C.E. CREDITS
    JUN 17, 2020 1:30 PM PDT
    Understanding the complex interplay between a pathogen and the host response is important to developing effective vaccines and therapeutics. The nCounter® Analysis System and GeoMx®...
    Loading Comments...
    Show Resources
    Attendees
    • See more