MENU
NOV 17, 2016 7:00 AM PST

Using patient-derived iPSCs to model and treat inherited retinal degenerative blindness

Speaker
  • Stephen A. Wynn Associate Professor of Regenerative Ophthalmology, Director Steven W. Dezii Translational Vision Research Facility, Wynn Institute for Vision Research, Department of Ophthal
    BIOGRAPHY

Abstract

Inherited retinal degenerative disorders such as retinitis pigmentosa are characterized by death of the light sensing photoreceptive neurons of the outer retina. Like the rest of the CNS, the retina has little capacity for endogenous regeneration, and as a result, photoreceptor cell death causes debilitating irreversible blindness. Gene augmentation has the potential to prevent photoreceptor cell death, while cell replacement could actually repopulate the retina with new functioning photoreceptor cells and restore vision. In this talk I will show how we are using patient-specific iPSCs to evaluate disease pathophysiology, test novel gene-based therapeutics and develop autologous photoreceptor cell replacement for the treatment of retinal degenerative blindness.
 


Show Resources
You May Also Like
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
NOV 09, 2022 8:00 AM PST
NOV 09, 2022 8:00 AM PST
Date: November 09, 2022 Time: 8:00am (PST), 11:00am (EST), 5:00pm (CET) The field of cell and gene therapy is rapidly growing. In particular, the use of lentiviruses in CAR-T applications is...
Loading Comments...
Show Resources