MAY 24, 2019 01:02 PM PDT

What do parasitic fish have to do with cancer?

Have you ever seen a lamprey up close? If you haven’t, you should probably count your blessings, because these fish are terrifying to look at. With their jawless, tooth-filled mouths, a lamprey, which is a parasitic fish that resembles and eel and feeds on the blood of other fish, is enough to induce nightmares in adult humans.

Yet new research published in Science Advances suggests that lampreys might be the perfect vehicle for drugs that treat brain tumors, cancer, and even stroke. The research comes from a team of scientists at the University of Wisconsin-Madison and the University of Texas at Austin and analyzes a type of molecule from the immune system of lampreys, called "variable lymphocyte receptors" (VLRs).

VLRs are unique in their capacity to reach the extracellular matrix or ECM (think back to high school biology class!). "Similar to water soaking into a sponge, the lamprey molecules will potentially accumulate much more of the drug in the abundant matrix around cells compared to specific delivery to cells," explained co-author Professor John Kuo.

Because ECM networks compose a significant part of the central nervous system, the researchers think that VLRs are capable of transporting drugs to the brain more effectively for treatments for brain conditions, particularly in scenarios where the brain-blood barrier has been affected.

(Quick side note: in case you haven’t heard of the brain-blood barrier, it is a physiological aspect that stops potentially harmful agents leaking into the brain but also, therefore does not allow drugs to easily penetrate the brain. In the case of some health situations where the brain is affected, the brain-blood barrier becomes more permeable, which can lead to other problems but on the flip side but also allows drugs to get in.)

"Molecules like this [VLRs] normally couldn't ferry cargo into the brain, but anywhere there's a blood-brain barrier disruption, they can deliver drugs right to the site of pathology," explains lead author Professor Eric Shusta.

A lamprey, in all its glory. Photo: Phys.org

The researchers conducted their investigations on mouse models of glioblastoma, an aggressive form of brain cancer. They found that mice that received treatment of VLRs bound to doxorubicin, a drug used to treat this cancer, resulted in prolonged survival of the individuals. While more research is needed on this topic, the investigators are hopeful about what their findings could mean for future treatment methods.

Sources: Medical News Today, Science Advances

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 11, 2019
Cancer
DEC 11, 2019
Urine test detects cancer: watch out for blue pee!
New research from MIT engineers and Imperial and published in Nature Nanotechnology could change the way to detect cancer. The study highlights the develop...
DEC 11, 2019
Drug Discovery & Development
DEC 11, 2019
Leukemia Drug Effective for Treating Childhood Brain Cancer
Scientists at the University of California-San Diego have found that a chronic myeloid leukemia drug was found to treat medulloblastoma in mouse models mor...
DEC 11, 2019
Cancer
DEC 11, 2019
One third of women don't take advantage of free cancer screenings
Have you ever received a cancer screening? If you haven’t, you’re not alone. New research from King's College London and Queen Mary Univers...
DEC 11, 2019
Cancer
DEC 11, 2019
Unpacking lactate's role in the Warburg effect
In a recent issue of Nature, the findings of one study made a particularly big splash: how and why cancer cells use energy differently than healthy cells. ...
DEC 11, 2019
Cancer
DEC 11, 2019
Can lithium heal damage from radiation?
Research suggests that lithium could play a role in minimizing the negative effects of radiation on the brain. The research was published in Molecular Psyc...
DEC 11, 2019
Cell & Molecular Biology
DEC 11, 2019
Linking Intestinal Stem Cells with Increased Cancer Risk From a High-Fat Diet
The work, which used a mouse model, links stem cell activity with cellular fat consumption in a new way....
Loading Comments...