OCT 08, 2019 3:03 PM PDT

Using temperature to awaken immune response to fight brain cancer

Glioblastoma is the most common form of adult brain cancer and also one of the most aggressive human cancers. Immunotherapy has yet to be shown proven effective against glioblastomas, and the length of survival for patients with the tumors following aggressive surgical resection, chemotherapy, and radiation therapy is still only fourteen months. About 14,000 people are diagnosed with the disease every year.

The dreary reality of this diagnosis is what makes new research published in Advanced Therapeutics so hopeful. As the collaborating authors of the study explain, their research details a technique that aims to take advantage of temperature in order to, “induce accumulation of requisite immune cells in the glioblastoma microenvironment, thereby transforming a “cold” to a “hot” immune microenvironment.”

 

"Our body has armies of white blood cells that help us fight off bacteria, viruses, and cancer cells. This constellation of cells constitutes our immune system," comments senior author Clark C. Chen, MD, Ph.D., Lyle French Chair in Neurosurgery and Head of the Department of Neurosurgery at the University of Minnesota Medical School. "One of the key reasons why glioblastoma is so aggressive is that it shuts off this immune system.”

And that’s also why glioblastomas don’t respond to immunotherapy. "Immunotherapy works by activating the white blood cells that are present in many cancer types. For reasons that are not clear, glioblastomas contain few white blood cells. So, there is nothing for immunotherapy to activate," adds co-senior author Andrew Kummel, Professor of Chemistry and Biochemistry at the University of California San Diego.

But let’s go back a moment. What exactly does a “cold” or “hot” immune microenvironment refer to? Previous studies have shown that glioblastomas produce a “cold” microenvironment, meaning one that is lacking the substrate immune cells that would be necessary for immunotherapy to be effective. Hence, the scientists had the idea that by manipulating the temperature of the immune microenvironment of a tumor, they could potentially activate more immune cells, making the tumor more susceptible to immunotherapy. They call this temperature manipulation the Goldilocks effect, referring to the story of the young girl who tastes three different bowls of porridge, one too hot, one too cold, and one just right.

Roughly 14,000 people are diagnosed with glioblastoma every year; it is one of the most agressive cancer tumors. Photo: Pixabay

This discovery was unexpected even to the researchers, says Chen. "Impressively, immunotherapy works only when the ultrasound is adjusted to maintain a stable body temperature as the cancer cells are ruptured," muses Chen. "Temperatures that deviate too much from the body temperature appear to compromise the effectiveness of the white blood cells. This 'Goldilocks' aspect of immunotherapy was not previously appreciated."

Already the team has collaborated with Professor of Electrical and Computer Engineering, Emad Ebbini, to develop an ultrasound system that is able to manipulate the tumors’ microenvironment based on the findings. Ebbini comments, "Our ultrasound is a perfect fit for the type of clinical application that Dr. Chen has developed. We are working toward a first-in-human study to test our ultrasound in glioblastoma patients."

Sources: Advanced Therapeutics, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 28, 2020
Cancer
Race disparities still exist among patients with lung cancer
OCT 28, 2020
Race disparities still exist among patients with lung cancer
Research published recently in the Journal of Surgical Oncology looks at the disparities in lung cancer treatment a ...
OCT 29, 2020
Cancer
Eat until you are only 70% full to reduce risk of fatty liver and liver cancer
OCT 29, 2020
Eat until you are only 70% full to reduce risk of fatty liver and liver cancer
Non-alcoholic fatty liver disease is known to be a risk factor for liver cancer because of an excess of fat accumulation ...
NOV 10, 2020
Cardiology
Liposomal Delivery Could Help Prevent Doxorubicin Cardiotoxicity
NOV 10, 2020
Liposomal Delivery Could Help Prevent Doxorubicin Cardiotoxicity
One of the greatest failures of modern cancer therapies is the rather substantial off-target toxic effects many radio-, ...
DEC 02, 2020
Cancer
Telomere shortening doesn't only indicate ageing...
DEC 02, 2020
Telomere shortening doesn't only indicate ageing...
While telomere shortening has been thought to be an adverse sign of aging, new research suggests that the shortening of ...
DEC 14, 2020
Cancer
Children with cancer face no higher risk of infection from COVID-19
DEC 14, 2020
Children with cancer face no higher risk of infection from COVID-19
Relieving news from a University of Birmingham study reports that children with cancer who test positive for COVID-19 do ...
DEC 28, 2020
Drug Discovery & Development
Anti-Diarrhea Drug Kills Aggressive Brain Cancer Cells
DEC 28, 2020
Anti-Diarrhea Drug Kills Aggressive Brain Cancer Cells
Glioblastoma is a very aggressive and lethal form of brain cancer that responds poorly to chemotherapy in children and a ...
Loading Comments...