JAN 02, 2020 8:33 PM PST

The new "tumor-on-a-chip"

In order to mimic the microenvironment of a tumor in the human body, researchers from Kyoto University have developed a device that they are describing as a 'tumor-on-a-chip'. The device is capable of mimicking the biochemical and biomechanical environments of tumors in vitro in order to allow for enhanced testing for potential new anti-cancer drugs. The research was published recently in the journal Biomaterials.

As small as a coin with a 1-millimeter well in its center, the tumor-on-a-chip is meant to mimic structurally as well as chemically a real tumor in the human body. As Science Daily describes, the small well on the chip is surrounded by 100 µm micro-posts, which support the growth of vasculature around the cultured tumor cells – a concept that is seen in human cancer tumors. To put it into simpler terms, blood vessels grow around the tiny posts to create an intertwined 3-D web on the culture.

"This 'perfusable vasculature' allows us to administer nutrients and drugs into the system to mimic the environment in the body," explains Yuji Nashimoto, first author of the study. "This allows us to have a clearer picture of the effectiveness of cancer-treating compounds."

The need for this type of technology is clear, state the researchers. Testing new drugs in cultures is time-consuming and often futile. "Potential compounds are tested using animal models and cells cultured in a dish. However, those results frequently do not transfer over to human biology," adds Nashimoto, of Tohoku University. "Furthermore, cells on a dish lack the three-dimensional structure and blood vessels, or vasculature, that keep it alive. So, we came up with a plan to construct a device that solves these issues."

Scientists develop "tumor-on-a-chip" to mimic a tumor's microenvironment. Photo: Pixabay

The findings from the researchers’ investigations show that this type of vasculature was successful in maintaining tumor cells’ healthy and proliferating so that anti-tumor drugs could be tested in more natural environs. They also found that drugs tested were most potent under flow conditions of the vasculature, proving, says lead researcher Ryuji Yokokawa, “the importance of blood flow in the vasculature when screening for drugs.”

The team of scientists hopes that their work will advance ongoing and future cancer-fighting drug trials. “Due to its size and utility, we hope the new device can expedite the tests on the countless number of potential new drugs,” concludes Yokokawa. “While many questions remain, we are happy to have developed this device and have shown that three-dimensional perfused cell culture is vital for the next step in drug discovery."

Sources: Science Daily, Biomaterials

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAR 21, 2020
Cancer
MAR 21, 2020
Identifying aggressive prostate cancer subtypes
New research published yesterday in the British Journal of Cancer from scientists at the University of East Anglia descr ...
MAR 30, 2020
Cancer
MAR 30, 2020
Cervical cancer screening affected by natural disasters
It may not come as a surprise that public health is adversely affected by natural disasters and conflict. New research p ...
MAY 07, 2020
Cell & Molecular Biology
MAY 07, 2020
How the Function of a Critical Immune Cell is Related to Metabolism
This work suggests that it may be possible to dampen autoimmunity or promote an immune attack on cancer through a bioche ...
MAY 06, 2020
Cancer
MAY 06, 2020
Olanzapine useful for cancer patients managing nausea unrelated to chemo
A study published last week in JAMA Oncology reports that a generic drug called Olanzapine could be useful for cancer pa ...
MAY 03, 2020
Cancer
MAY 03, 2020
New genes targeted for anti-cancer therapies
Research published in the journal Genome Biology reports the discovery of two overlooked genes that have the potential t ...
MAY 29, 2020
Cancer
MAY 29, 2020
What can we do about drug-induced tetraploidy in cancer cells?
A paper published in the journal Trends in Cancer describes how cancer therapies sometimes fuel genetic changes in cells ...
Loading Comments...