SEP 29, 2015 3:37 PM PDT

Switching On Immune Cells for Cancer Therapy

WRITTEN BY: Ilene Schneider
Killer T cells (green and red) surrounding a cancer cell.UC San Francisco scientists have developed a molecular “on switch” enabling tight control over the actions of T cells, immune system cells that have potential as cancer therapies. The innovation could sharply reduce severe, sometimes fatal side effects that have been a problem in advancing T cell-based treatments.

According to Wendell Lim, Ph.D., professor and chair of UCSF’s Department of Cellular and Molecular Pharmacology, and senior author of a new paper on the work, “Right now we put engineered T cells into patients and just hope for the best. This is the first of a series of ‘control knobs’ our lab is trying to create so doctors might have additional command over these cells once they’re inside the body.”

Scientists pursuing cell therapy have been refining cell-surface sensors called chimeric antigen receptors, or CARs. The CARs prompt T cells to zero in on particular proteins found primarily in tumors, where they launch cancer-killing immune responses.

CAR-equipped T cells can be successful in the treatment of chemotherapy-resistant leukemia, but they can cause side effects so severe that they may require monitoring in an Intensive Care Unit. Some patients have died after receiving CAR T cells or other engineered T cells.

Lim explained, “T cells are really powerful beasts, and they can be lethal when they’re activated. We’ve needed a remote control system that retains the power of these engineered T cells, but allows us to communicate specifically with them and manage them while they’re in the body.”

While some scientists have developed “suicide switches” that kill off CAR T cells if side effects become too dangerous, Lim thinks “that’s like shooting your own soldiers in the back. It requires completely aborting a complex and expensive treatment.”

As published in the September 24 issue of Science Express and reported in Bioscience Technology, the UCSF team took the opposite approach, creating a new type of CAR T cell that is “off” by default. In the same way as conventional CAR T cells, according to the article, “These newly developed T cells will navigate toward and interact with cancer cells, but will not launch any immune assault unless a specially designed drug has been administered. This controller drug forms a chemical bridge between components inside the CAR T cells, flipping the cells into an active, on status. When the drug is no longer present, the T cells revert to an off position.”
 
Lim concluded, “That we can engineer CAR T cells to have slightly different, quite powerful effects – even if for a subset of patients or for certain types of cancer – is really remarkable, and this is just the tip of the iceberg.”


 
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 30, 2020
Cancer
Chemokines Could be the Key in Controlling Glioma Stem Cells
SEP 30, 2020
Chemokines Could be the Key in Controlling Glioma Stem Cells
The transformation of a healthy cell into a cancerous one often comes with a slew of cellular signaling changes.  T ...
SEP 29, 2020
Cancer
Gut microbiome influences oral therapy for prostate cancer treatment
SEP 29, 2020
Gut microbiome influences oral therapy for prostate cancer treatment
Research from a team of scientists at Lawson Health Research Institute and Western University suggests that bacteria in ...
OCT 07, 2020
Cancer
Beyond the eye: improving melanoma detection
OCT 07, 2020
Beyond the eye: improving melanoma detection
Research from UC San Francisco reports that it is possible to use genomic methods to detect skin damage from the sun not ...
OCT 18, 2020
Cancer
Virus-mimicking drug attacks melanoma tumors
OCT 18, 2020
Virus-mimicking drug attacks melanoma tumors
Research published recently in the journal Science Translational Medicine from scientists at the UCLA Jonsson Compr ...
OCT 28, 2020
Cancer
Race disparities still exist among patients with lung cancer
OCT 28, 2020
Race disparities still exist among patients with lung cancer
Research published recently in the Journal of Surgical Oncology looks at the disparities in lung cancer treatment a ...
NOV 17, 2020
Clinical & Molecular DX
Tumor Stiffness Linked to Its Aggressiveness
NOV 17, 2020
Tumor Stiffness Linked to Its Aggressiveness
  As tumors grow, tiny areas at their cores are found to become stiff prior to metastasis, or the spread of cancer ...
Loading Comments...